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Abstract

This document details the structural definition, development process, and functional
flow of the MODIS Land-Cover Product. The Land Cover and Land-Cover Change Pa-
rameters were proposed by the MODIS Land Team, with Team Member Alan Strahler
leading the effort. The Land Cover Parameter is a 1-km product provided on a quarterly
basis beginning one year following the launch of the MODIS instrument aboard the EOS-
A platform in June, 1998. The Land-Cover Change Parameter is a post-launch, near-term
parameter also planned for quarterly delivery.

Both parameters rely on a 1-km gridded database composited from MODIS Level 2
and 3 products. Inputs include (1) surface reflectances at 1000-m spatial resolutions in the
MODIS Land Bands (1-7) (an interim product provided by MODIS BRDF/Albedo Prod-
uct MOD43); (2) spatial texture derived from Band 2 (near-infrared) at 250-m resolution;
(3) terrain elevation information (MOD03); (4) vegetation index (MOD34); (5) MODIS
Level 3 Snow/Sea Ice cover (MOD33); (6) land surface temperature at 1 km (MOD11;
2484); and (7) directional reflectance information derived from the MODIS
BRDF/Albedo Product (MOD43; 3669). These data are composited over a one-month
time period to produce a globally-consistent, multitemporal database on a 1-km grid as
input to classification and change characterization algorithms.

The Land Cover Parameter recognizes 17 categories of land cover following the
scheme proposed by the IGBP for the global 1-km vegetation database, which is now
being prepared from global AVHRR LAC NDVI composites. This set of  cover types in-
cludes eleven categories of natural vegetation covers broken down by life form, three
classes of developed and mosaic lands, and three classes of non-vegetated lands.

Land cover classes are assigned by processing the 32-day database using a statistical
classification algorithm, e.g., an artificial neural network classifier, to assign land cover
classes based on training data. To reduce computational overhead and increase flexibility,
classification proceeds by continents.

The Land-Cover Change 1-km Parameter is designed to quantify subtle and progres-
sive land-surface transformations, i.e., land cover modifications, as well as obvious and
instantaneous changes, such as land cover conversions. As such, it is not a conventional
change product that simply compares land cover databases at two different times and
identifies changes in categorical land cover. The algorithm for the Land-Cover Change
Parameter combines analyses of change in multispectral-multitemporal data vectors with
models of vegetation change mechanisms to recognize both the type of change as well as
its intensity. The Land-Cover Change 250-m Parameter has the objective to locate areas
of change using the finest resolution MODIS data.

The algorithm development and validation efforts for the Land Cover Product are
based on a network of test sites chosen to represent major global biomes and cover types.
Five types of sites are recognized, ranging from a few data-rich sites to a larger number
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of sites for which only minimal data are available. Prelaunch efforts will focus on sites
for which temporal sequences of TM and AVHRR data are available, coupled with fine
resolution cover class data. These are most suitable for algorithm development. Post-
launch, all types of sites will be used to train the classifier and validate its output. Land-
sat-7 and ASTER images will be particularly useful for updating information about test
sites and identifying local change processes. The validation procedure will characterize
the accuracy of the product as well as provide information that can be used in spatial ag-
gregation to provide land cover and land-cover change data at coarser resolutions.

Present schedules call for the first Land Cover Parameter to be released about 15
months after launch based on at least one year of 32-day composites. During this interim
period, a provisional at-launch product will be provided. The first Land-Cover Change
Parameter will be released about 27 months after launch, based on a two-year period of
observation.

New Team Member John Townshend has proposed two new postlaunch products.
One of these focuses on an “alarm” algorithm applied to 250-m data that recognizes land
cover change, especially deforestation, using changes in spatial texture. The other pro-
vides continuous fields of land cover properties, such as proportion in woody cover, us-
ing linear mixture modeling.
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1. Introduction

1.1 Identification

MOD IS  Prod uct  N o. 12 ( MOD 12) 
Parameter
Number  Parameter Name

Spatial
Resolution

Temporal
Resolution

2669 Land Cover  Type, 1- km 1 km 4/yr
TBD Land Cover  Type, CM G 1/4° 4/yr
2671 Land- Cover  Change, 1- km 1 km 4/yr
TBD Land- Cover  Change, 250- m 250 m TBD 

1.2 Overview

This document details the structural definition, development process, and functional
flow of the MODIS Land-Cover Product. It represents a revision of the Version 3.0
(Strahler et al., 1995) and Version 4.1 (provisional) Land Cover ATBDs. The Land
Cover Parameter is a 1-km product provided on a quarterly basis beginning one year fol-
lowing the launch of the MODIS instrument aboard the EOS-AM1 platform in June,
1998 (Running et al., 1994b). It will also be prepared on a 1/4ogrid for use by global
modelers. The Land-Cover Change 1-km Parameter is a post-launch, near-term parame-
ter. The Land-Cover Change 250-m Parameter, proposed by new MODIS Land Team
member John Townshend, will be produced at, or very soon after, launch.

The Land Cover and Land-Cover Change 1-km Parameters rely on a 1-km gridded
database assembled from MODIS Level 3 products produced on 8- or 16-day cycles. In-
puts include:

(1) Surface reflectances derived from the MODIS BRDF/Albedo product
(MOD43) in the MODIS Land Bands (1-7), atmospherically corrected and
adjusted to nadir view at the prevailing sun angle of the period;

(2) Spatial texture derived from Band 2 (near-infrared, 250-meter) at 1000-m
resolution;

(3) Terrain elevation information (MOD03);
(4) Vegetation index (MOD34);
(5) Snow/Sea Ice cover (MOD33);
(6) Land surface temperature at 1 km (MOD11; 2484);
(7) Directional reflectance information from MOD43; and a
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(8) Land/water mask that restricts classification to land regions derived
from the MODIS BRDF/Albedo Product (MOD43; 3669).

The temporal resolution of this database is 32 days, corresponding to two complete
MODIS orbit cycles.

The Land Cover Parameter recognizes 17 categories of land cover following the
scheme proposed by the IGBP for the global 1-km vegetation database, which is now
being prepared from global AVHRR LAC NDVI (Advanced Very High Resolution Ra-
diometer, Local Area Coverage, Normalized Difference Vegetation Index) composites.
This set of  cover types includes eleven categories of natural vegetation covers broken
down by life form, three classes of developed and mosaic lands, and three classes of non-
vegetated lands.

Land cover classes are assigned by processing the 32-day database using a statistical
classification algorithm, e.g., an artificial neural network classifier, to assign land cover
classes based on training data. To reduce computational overhead and increase flexibility,
classification proceeds by continents.

The Land-Cover Change 1-km Parameter is designed to quantify subtle and progres-
sive land-surface transformations, i.e., land cover modifications, as well as obvious and
instantaneous changes, such as land cover conversions. As such, it is not a conventional
change product that simply compares land cover databases at two different times and
identifies changes in categorical land cover. The algorithm for the Land-Cover Change
Parameter combines analyses of change in multispectral-multitemporal data vectors with
models of vegetation change mechanisms to recognize both the type of change as well as
its intensity. The Land-Cover Change 250-m Parameter has the objective to locate areas
of change using the finest resolution MODIS data.

The algorithm development and validation efforts for the Land Cover Product are
based on a network of test sites chosen to represent major global biomes and cover types.
Five types of sites are recognized, ranging from a few data-rich sites to a larger number
of sites for which only minimal remote sensing and collateral data are available. Pre-
launch efforts will focus on sites for which temporal sequences of TM and AVHRR data
are available, coupled with fine resolution cover class data. These are most suitable for
algorithm development. Postlaunch, all types of sites will be used to train the classifier
and validate its output. Landsat-7 and ASTER images will be particularly useful for up-
dating information about test sites and identifying local change processes. The validation
procedure will characterize the accuracy of the product as well as provide information
that can be used in spatial aggregation to provide land cover and land-cover change data
at coarser resolutions.

Present schedules call for the first Land Cover Parameter to be released about 15
months after launch based on at least one year of 32-day composites. During this interim
period, a provisional at-launch product will be provided. The first Land-Cover Change
Parameter will be released about 27 months after launch, based on a two-year period of
observation.
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New Team Member John Townshend has proposed two new postlaunch products.
One of these focuses on an “alarm” algorithm applied to 250-m data that recognizes land
cover change, especially deforestation, using changes in spatial texture. The other pro-
vides continuous fields of land cover properties, such as proportion in woody cover, us-
ing linear mixture modeling.

1.3 Document Scope

The remainder of this document is organized into four broad sections. Section 2 will dis-
cuss the rationale for the development of the Land Cover Product, provide a historical
context and background information, describe the system of land cover units, and discuss
MODIS in terms of its ability to facilitate and improve capabilities for characterizing land
cover and land-cover change on a global scale. The objective of section 3 is to define the
overall structure of the algorithms; present the mathematics and practical descriptions of
the primary algorithm components; present the use of training sites in calibration and
validation; discuss sources of error and uncertainty; address practical issues that are likely
to arise; discuss preprocessing considerations, computing needs, and reliance on other
MODIS activities; detail the calibration and validation phase of the algorithms; and dis-
cuss postlaunch product validation. Section 4 addresses potential constraints and limita-
tions. The concluding section 5, contributed by new MODIS Team Member John Town-
shend, describes the 250-m Land-Cover Change Parameter and additional planned post-
launch products in greater detail.

1.4 Applicable Documents and Publications

The following publications on land cover issues have been supported, in full or in
part, by MODIS funding to Boston University.

In Press:
Abuelgasim, A., S. Gopal, J. Irons and A. Strahler. 1996. Classification of ASAS

multiangle and multispectral measurements using artificial neural networks. Re-
mote Sensing of Environment, Vol. 58: in press.

Moody, A., S. Gopal, and A.H. Strahler.1996. Artificial neural network response to
mixed pixels in coarse-resolution satellite data. Remote Sensing of Environment,
Vol. 58: in press.

Moody, A. and C.E. Woodcock. 1996, Calibration-based models for correction of
area estimates derived from coarse resolution land-cover data. Remote Sensing of
Environment., Vol. 58: in press.

Strahler, A.H. 1996. Vegetation canopy reflectance modeling—recent developments
and remote sensing perspectives. Remote Sensing Reviews: in press.

Woodcock, C.E., J.B. Collins and D.L.B. Jupp. 1996. Scaling remote sensing models.
in Scaling Up, P. Van Gardingen, G. Foody and P. Curran (eds.), Society of Ex-
perimental Biology, Cambridge University Press, in press.
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Published:
Abuelgasim, A.A., Gopal, S. and A.H. Strahler. 1996. Retrieval of canopy structural

parameters from multiangle observations using an artificial neural network. Pro-
ceedings of the 1996 International Geoscience and Remote Sensing Symposium,
Lincoln, Nebraska, May 27-31, Vol. 3, pp. 1426-1428.

Borak, J., P. Fisher, A.H.Strahler and A. Moody. 1995. Local-scale evaluation of a
technique for land-cover classification based on composited NDVI data, Proc.
61st Ann. Convention Amer. Soc. Photogrammetry and Remote Sensing, Char-
lotte, NC, Feb. 27-March 2, 1995, vol. 3, pp. 796-805.

Borak, J.S. and A.H. Strahler. 1996. Feature selection using decision trees -- an appli-
cation for the MODIS land cover algorithm. Proceedings of the 1996 Interna-
tional Geoscience and Remote Sensing Symposium, Lincoln, Nebraska, May 27-
31, Vol. 1, pp. 243-245.

Brodley, C.E. and M.A. Friedl.1996. Improving Automated Land Cover Mapping by
Identifying and Eliminating Mislabeled Observations from Training Data. Pro-
ceedings of the 1996 International Geoscience and Remote Sensing Symposium,
Vol. 2, pp. 1379-1381

Brodley, C.E., M.A. Friedl and A. H. Strahler 1996. New Approaches to Classifica-
tion in Remote Sensing Using Homogeneous and Hybrid Decision Trees to Map
Land Cover., Proceedings of the 1996 International Geoscience and Remote
Sensing Symposium, Lincoln, Nebraska, May 27-31, Vol. 1, pp. 532-534

Carpenter, G.A., M.N. Gjaja, S. Gopal and C.E. Woodcock. 1996. ART neural net-
works for remote sensing: Vegetation classification for Landsat TM and terrain
data. Proceedings of the 1996 International Geoscience and Remote Sensing
Symposium, Lincoln, Nebraska, May 27-31, Vol. 1, pp. 529-531.

Gopal, S. and M. Fischer. 1996. A comparison of three neural network classifiers for
remote sensing classification. Proceedings of the 1996 International Geoscience
and Remote Sensing Symposium, Lincoln, Nebraska, May 27-31, Vol.. 1, pp. 87-
789.

Gopal, S., C. Woodcock and A.H. Strahler. 1996. Fuzzy ARTMAP classification of
global land cover from AVHRR data set. Proceedings of the 1996 International
Geoscience and Remote Sensing Symposium, Lincoln, Nebraska, May 27-31, Vol.
1, pp. 538-540.

Lambin, E. F and A. H. Strahler. 1994. Indicators of land-cover change for change-
vector analysis in multitemporal space at coarse spatial scales. International
Journal of Remote Sensing 15: 2099-2119.

Lambin, E. F. and A. H. Strahler. 1994. Change-vector analysis: A tool to detect and
categorize land-cover change processes using high temporal-resolution satellite
data. Remote Sensing of Environment. 8: 231-244. Moody, A. and A.H. Strahler.
1994. Characteristics of composited AVHRR data and problems in their classifi-
cation. International Journal of Remote Sensing 15(17): 3473-3491.

Moody, A. and A.H. Strahler. 1994. Characteristics of composited AVHRR data and
problems in their classification. International Journal of Remote Sensing 15(17):
3473-3491.
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Moody, A. and C. E. Woodcock. 1994. Scale-dependent errors in the estimation of
land-cover proportions: Implications for global land-cover datasets. Photogram-
metric Engineering and Remote Sensing 60: 585-594.

Moody, A. and C.E. Woodcock. 1995. Calibration-based methods for correcting
coarse resolution estimates of land-cover proportions. Proc. 61st Ann. Convention
Amer. Soc. Photogrammetry and Remote Sensing, Charlotte, NC, Feb. 27-March
2, 1995, vol. 3, pp. 684-693.

Moody, A. and C. E. Woodcock. 1995. The influence of scale and spatial characteris-
tics of landscapes on land-cover mapping using remote sensing. Landscape Ecol-
ogy 10: 363-379.

Muchoney, D.M. 1996. The Role of SPOT Data in Global Ecosystem and Biodiver-
sity Monitoring. Proceeding10th SPOT Conference, Paris, April 1996.

Muchoney, D.M., J. Borak and A. Strahler. 1996. Global Landcover Classification
Training and Validation Issues and Requirements. Proceedings of the 1996 Inter-
national Geoscience and Remote Sensing Symposium, Lincoln, Nebraska, May
27-31, Vol. 1, pp. 233-235.

Running, S.W., C.O. Justice, V.V. Salomonson, D. Hall, J. Barker, Y.J. Kaufman,
A.H. Strahler, A.R. Huete, J.-P. Muller, V. Vanderbilt, Z.M. Wan, P. Teillet and
D. Carneggie. 1994b. Terrestrial remote sensing science and algorithms planned
for EOS/MODIS. International Journal of Remote Sensing 15(17): 3587-3620.

Strahler, A.H. 1993. Report of LandCcover Products Workshop: MODIS Land Team.
Flathead Lake, Montana, Sept. 21-23, 1992.

Strahler, A.H.1996. An overview of MODIS products for land applications. Proc. 8th
Australasian Remote Sens. Conf., Canberra, Australia, March 25-29, CD-ROM, 8
pp.

Strahler, A.H.1996. AVHRR applications in support of MODIS product development,
Proc. 8th Australasian Remote Sens. Conf., Canberra, Australia, March 25-29,
CD-ROM, 4 pp.

Strahler, A.H., A. Moody, and E. Lambin. 1995, Land cover and land-cover change
from MODIS, Proc. 1995 International Geoscience and Remote Sensing Sympo-
sium, Florence, Italy, July 10-14, 1995, vol. 2, pp. 1535-1537.

2. Overview and Background Information

2.1 Experimental Objective

Land cover, and human and natural alteration of land cover, play a major role in
global-scale patterns of climate and biogeochemistry of the earth system. Although the
oceans are the major driving force for the Earth’s physical climatology, the land surface
has considerable control on the planet’s biogeochemical cycles, which in turn signifi-
cantly influence the climate system through the radiative properties of greenhouse gases
and reactive species. Further, variations in topography, albedo, vegetation cover, and
other physical characteristics of the land surface generate variations of weather and cli-
mate by forcing atmospheric circulation patterns that are driven by surface-atmosphere
matter and energy fluxes and the momentum of the earth’s rotation.



6 MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change

In this context, an important application of accurate global land-cover information is
the inference of parameters that influence biophysical processes and energy exchanges
between the atmosphere and the land surface as required by regional and global-scale
climate and ecosystem process models (Townshend et al., 1991). Examples of such pa-
rameters for climate modeling include leaf area index (LAI), roughness length, surface
resistance to evapotranspiration, canopy greenness fraction, vegetation density, root dis-
tribution, and fraction of photosynthetically-active radiation absorbed (FPAR) (Sellers,
1991). These serve as input variables that control surface energy and mass balances. Ex-
amples of ecosystem process model parameters for which land cover type may serve as a
surrogate include leaf photosynthetic capacity, canopy conductance, type of photosyn-
thetic system, and maximum photosynthetic rate (Running and Coughlan, 1988).

Most of these inferences are based on the structural character of the vegetation cover,
which is sensible to remote sensing. The objective of the Land Cover Parameter is to
identify a suite of land cover types amenable to such parameterization by exploiting the
spectral, temporal, spatial, and directional information content of MODIS data. The ob-
jective of the Land-Cover Change Product is to detect and quantify the changes in land
covers and the natural and anthropomorphic processes that bring them about so that
global and regional models may be projected forward through changes in their driving
surface parameters.

2.2 Historical Perspective

2.2.1 Global-Scale Land Cover Data

Land-cover datasets currently used for parameterization of global climate models are
typically derived from a wide range of preexisting maps and atlases (Olson and Watts,
1982; Matthews, 1983; Wilson and Henderson-Sellers, 1985). This approach has several
limitations. First, the reference sources may themselves present a range of different dates,
spatial scales, and classification schemes. Confusion regarding the mapping of the refer-
ence class units to the classification system and scale used in the land-surface dataset may
then lead to errors in the final product. For example, floristic and climatically-based clas-
sifications, while not inherently compatible, may need to be combined and reclassified to
generate physiognomic cover types for a land-cover compilation (Townshend et al.,
1991). Second, the resulting datasets are fundamentally static, and can be assumed to
perpetuate errors existing in the sources from which they were derived. Third, some
datasets are maps of potential or climax vegetation, which is inferred from climatic vari-
ables such as temperature and precipitation rather than the true vegetation type.

Townshend et al. (1991) compared the areal statistics and spatial distributions of a
large number of land cover datasets. They documented considerable disagreement in the
relative percentages of basic land-cover types among these products. Moreover, even
when there was general agreement in the relative area covered by given vegetation types,
the spatial distribution of these units differed. While such datasets have obvious limita-
tions, they represent the state of the science for driving large scale process models, and
have been designed specifically for this purpose.
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Many researchers have attempted to produce regional-scale land cover datasets using
coarse spatial-resolution, high temporal-frequency data from the AVHRR instrument
aboard the NOAA series of meteorological satellites. Almost without exception, these
efforts have involved the conversion of AVHRR bands 1 and 2 to NDVI values. The
NDVI, being simply the ratio of the difference in near-infrared and red reflectance nor-
malized by their sum. A registered time series of NDVI images is then composited so
that, for every pixel location, the maximum NDVI value encountered throughout the
compositing period is output. The compositing procedure tends to select against meas-
urements that are strongly influenced by atmospheric and aerosol scattering. These meas-
urements have reduced NDVI values due to differential scattering effects in red and near-
infrared bands. Cloud-contaminated measurements also produce lower NDVI values, as
clouds reflect strongly in both the red and near-infrared wave bands. The compositing of
NDVI values further reduces the variability associated with changing view and illumina-
tion geometry (Holben, 1986), although measurements near the forward-scattering direc-
tion tend to have higher NDVI values and will thus be preferentially selected. Compo-
siting periods are chosen based on a trade-off between the expected frequency of changes
in vegetation and the minimum length of time necessary to produce cloud-free images.

The NDVI generally quantifies the biophysical activity of the land surface and, as
such, does not provide land cover type directly. However, a time series of NDVI values
can separate different land cover types based on their phenology, or seasonal signals (e.g.
Lenney et al., 1996). Reed et al. (1994) and DeFries et al. (1995) have developed and
used multitemporal phenological metrics to derive land cover classifications from
AVHRR data. Lambin and Ehrlich (1996a and 1996b) have found that using a time series
of the ratio of surface temperature to NDVI provides a more stable classification than
NDVI alone, primarily by isolating interannual climatological variability.

Townshend, et al. (1987) performed supervised classifications on composited NDVI
GAC (Global Area Coverage) data for South America. While they did not validate their
results with test data, they found that accuracy for the training sites improved substan-
tially with the increase in the number of images included in the time series. Koomanoff
(1989) used annually-integrated NDVI values to generate a global vegetation map using
NOAA's Global Vegetation Index product (GVI).This work represents nine vegetation
types and does not rely on the seasonality of the NDVI. Lloyd (1990) employed a binary
classifier based on summary indices derived from a time series of NDVI data. These
phytophenological variables included the date of the maximum photosynthetic activity,
the length of the growing season, and the mean daily NDVI value. The variables were fed
through a binary decision tree classifier that stratified pixels based first on the date of the
maximum NDVI, then the length of the growing season, and finally on the mean daily
NDVI. Although the author offers no validation, the approach is intuitively appealing and
provides a framework that could expand to include stratification based on different fac-
tors at different scales.

A coarse-resolution global land surface parameter database has recently been released
on five compact disks as an activity of the International Satellite Land Surface Climatol-
ogy Project (ISCLSCP, Meeson et. al. 1995). The database includes land cover classes,
absorbed fraction of photosynthetically-active radiation (FPAR), leaf area index (LAI),
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roughness length, and canopy greenness fraction, along with data on global meteorology,
soils, and hydrology. The spatial scale of the database is 1° by 1°. Variables such as
FPAR, LAI and canopy greenness fraction are derived from 8-km composited AVHRR
NDVI data. The land cover classification is based on a spatial aggregation of the 8-km
data to one degree followed by supervised classification of the temporal patterns in NDVI
(DeFries and Townshend, 1994).

Loveland et al. (1991, 1995) used one year of monthly composited AVHRR-LAC
data to generate an unsupervised classification of land cover types for the conterminous
United States. The resulting clusters were further stratified based on ancillary environ-
mental data such as elevation and ecoregion. Class labels were assigned based on the
temporal curves of the clusters as well as a large number of ancillary sources. While ob-
viously limited by the quality of the composited NDVI data, as well as the accuracy of
the ancillary sources, this dataset represents the most convincing large area classification
of AVHRR data at 1-km spatial resolution to date.

At present, Loveland's effort continues under the auspices of the IGBP-DIS
(International Geosphere Biosphere Programme-Data and Information System), based on
a global database of 1-km AVHRR observations received during the period April 1992
through September 1993 (Belward and Loveland, 1995; Belward, 1996). These have been
assembled and 10-day composited at the EROS Data Center (EDC). The 10-day compos-
ites have been further composited into monthly composites, thus providing a multitempo-
ral database for land cover classification using an unsupervised clustering and labeling
approach. The product is being developed in continental segments; as of November 1996,
North America, South America, and Africa had been completed, with the remaining con-
tinents to be completed by June, 1997.

2.2.2 Land Cover Classification Using Neural Networks

In the recent literature, several new approaches to pattern recognition have been
brought to bear in the problem of classification of remotely sensed data. These include
artificial neural networks, decision-tree classifiers, and computer vision algorithms. Thus
far, the most promising classification techniques seem to be based on neural networks.
Accordingly, we have identified the neural network approach as the candidate algorithm
for the Land Cover Parameter. The following discussion reviews the literature on land
cover classification using neural networks.

The classification of remotely sensed datasets using artificial neural networks first
appeared in the remote sensing literature about five years ago. Since then, examples and
applications have become increasingly common. Remotely-sensed datasets processed by
neural network-based classifiers have included images acquired by the Landsat Multis-
pectral Scanner (MSS) (Lee et al., 1990; Benediktsson et al., 1990); Landsat TM
(McClellan et al., 1989; Hepner et al., 1990; Kiang, 1992; Bischof et al., 1992; Heer-
mann and Khazenie, 1992; Salu et al., 1993; Yoshida and Omatu, 1994; Fitzgerald and
Lees, 1994;); synthetic aperture radar (Decatur, 1989; Hara et. al, 1994); SPOT
(Kanellopoulos et al., 1992; Dreyer, 1993; Tzeng et al., 1994); AVHRR (Key et al.,
1989; Gopal et al., 1994); and aircraft scanner data (Benediktsson et al., 1993). A number
of these studies have also included ancillary data (e.g., topography, as in Benediktsson et
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al., 1990, 1993, or texture, as in Bischof et al., 1992). Many studies have been directed
toward recognition of land cover classes, which have ranged from broad life-form catego-
ries (e.g., Hepner et al., 1990) to floristic classes (Fitzgerald and Lees, 1994). Most use a
supervised approach, but unsupervised classification using self-organizing neural net-
works has also been attempted (e.g., Hara et. al, 1994). In nearly all cases, the neural
network classifiers have proved superior to conventional classifiers, often recording
overall accuracy improvements in the range of 10-20 percent.

As the number of successful applications of neural network classification increases, it
seems increasingly clear that neural network-based classification is superior to conven-
tional approaches for remote sensing. The reasons include: (1) neural network classifiers
are distribution-free and can detect and exploit nonlinear data patterns; (2) neural network
classification algorithms can easily accommodate ancillary data; (3) neural network clas-
sifiers are typically more accurate than conventional classifiers; and (4) neural network
architectures are quite flexible and can be easily modified to optimize performance.

Neural networks can also yield important information about the decision structure
contained within them. For example, Key at al. (1989) examined the weights and inter-
connections within the layers of a trained neural network to provide insight into the way
that the network makes decisions. More recently, Gopal and Woodcock (1995) success-
fully used principal components analysis (PCA) to interpret the structure of weights in a
fully-trained network for a change detection study.

Much of the neural net classification work in remote sensing has used multilayer
feed-forward networks that are trained using the backpropagation algorithm, a recursive
learning procedure using a gradient descent search. However, this training procedure is
sensitive to the choice of initial network parameters and to overfitting (Gopal et al.,
1994). The use of nets utilizing adaptive resonance theory (ART) (Carpenter, 1989) has
overcome these problems. Networks organized on the ART principle are stable as learn-
ing proceeds, while at the same time they are plastic enough to learn new patterns.

Some recent studies by Gopal et al. (1994) highlight the utility of fuzzy ART neural
network architecture and its application to the MODIS land cover classification problem.
Fuzzy ARTMAP automatically constructs a minimal number of recognition categories to
meet accuracy criteria. A voting strategy improves prediction by training the system sev-
eral times on different orderings of an input set. ARTMAP dynamics are fast, stable, and
scalable, overcoming common limitations of back propagation.

 In the first study, Gopal et al. (1994) classified one year of monthly composited
AVHRR LAC NDVI data from west Africa at 1.1-km spatial resolution into six broad
life-form classes using a fuzzy ARTMAP neural net classifier (Carpenter et al., 1991).
The authors report per-class accuracies ranging between 66 and 98 percent, with an aver-
age accuracy of 83 percent. The latter result compares very favorably with a more typical
feed-forward architecture trained by back propagation that achieved an average accuracy
of only 61 percent. Note that feed-forward back-propagation networks have generally
been observed to outperform conventional supervised classifiers, such as maximum like-
lihood.



10 MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change

 Using the annual sequence of composited Normalized Vegetation Index (NDVI) val-
ues in an AVHRR data set, DeFries and Townshend (1994) distinguished eleven global
cover types and classified global land cover with a maximum likelihood classifier. Gopal
et al. (1996) used fuzzy ARTMAP to classify the same data set. Classification results
were analyzed and compared with those obtained from DeFries and Townshend (1994).
First, classification accuracy on the training data set is 100 percent compared with the
corresponding accuracy of 86.8 percent. Second, when fuzzy ARTMAP is trained using
80 percent of data set and tested on the remaining (unseen) 20 percent data set, classifi-
cation accuracy is more than 80 percent. Third, classification results vary with and with-
out latitude as an input variable similar to those of DeFries and Townshend.

 In another study, Gopal and Fischer (1996) evaluated the performance of Multi-
Layer Perceptron (MLP), Radial Basis Function, and Fuzzy ARTMAP networks using a
Landsat-5 TM scene of the northern section of the city of Vienna, Austria. Classification
accuracies obtained from the neural network classifiers are compared with a benchmark,
the maximum likelihood classifier. In addition to the evaluation of classification accu-
racy, the neural networks are analyzed for their generalization capability and stability of
results. Best overall results (in terms of accuracy and convergence time) are obtained us-
ing fuzzy ARTMAP followed by MLP (with weight elimination). Their classification er-
ror rates on the training data set are zero and 7.87 percent respectively; classification er-
ror on the testing data set are 10.24 percent and less than 2 percent. Simulation results
serve to illustrate the properties of various classifiers in general, as well as the stability of
the results with respect to various critical control parameters, initial parameter conditions,
training time, and different training and testing data sets.

 Carpenter et al. (1996) developed a new methodology for automatic mapping from
Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural
network. System capabilities were tested on a challenging remote sensing classification
problem, using spectral and terrain features for vegetation classification in the Cleveland
National Forest. After training at the pixel level, system capabilities were tested at the
stand level, using sites not seen during training. Results were compared to those of
maximum likelihood classifiers, as well as back propagation neural networks and K
Nearest Neighbor algorithms. Best results were obtained using a hybrid system based on
a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A voting
scheme was used to assign confidence estimates to competing predictions.

 In another recent study with implications for MODIS land cover, Moody et al.
(1996) showed that neural net output vectors need not be interpreted categorically, but
under some circumstances can be used as fuzzy predictors of class membership (Birdle,
1990). Moody et al. demonstrate that where pixels are mixed, neural net outputs can de-
tect such mixtures, a result that leads the way for both automatic categorization of mosaic
classes of mixed covers and the generation of confidence flags when single-category out-
puts are assigned.

2.2.3 Directional Information in Land Cover Classification

Although the application of spectral, temporal, and spatial information in classifica-
tion of remotely-sensed data has long been established in the literature, it is only recently
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that the importance of directional information has been established. In a study utilizing
directional aircraft scanner imagery of an agricultural test site, Barnsley (Barnsley et al.,
1990; Barnsley, 1995) noted that by using a principal components transformation and
adding three view angles to two bands of spectral data, classification accuracies increased
by approximately 20 percent. Abuelgasim and Gopal (1994; Abuelgasim et al., 1995)
used a hybrid unsupervised-supervised neural network classifier to distinguish five broad
land cover classes in Minnesota subboreal forest from directional reflectances imaged by
NASA’s ASAS (Advanced Silicon Array Spectrometer) aircraft instrument (Irons et al.,
1991). Using seven directional images acquired in a single near-infrared band, the authors
obtained 89 percent accuracy using the hybrid classifier, as compared to 85 percent for a
conventional feed-forward back-propagated neural net and 61 percent for a maximum
likelihood classifier.

2.2.4 Land-Cover Change

Global assessment of the changes in physical characteristics of the terrestrial surface
cover is a fundamental input for models of global climate and terrestrial hydrology.
While some changes in land cover, such as long-term changes in climate due to astro-
nomical causes, or shorter-term vegetation successions produced by geomorphic proc-
esses are caused by natural processes, human activity increasingly modifies the land sur-
face cover. These modifications arise through direct actions, such as deforestation, agri-
cultural activities and urbanization, or indirectly, through human-induced climatic
change. The importance of mapping, quantifying, and monitoring changes in the physical
characteristics of land cover has been widely recognized in the scientific community as a
key element in the study of global change (e.g. IGBP, 1994a; Henderson-Sellers and Pit-
man, 1992; Nemani and Running, 1995, 1996).

Digital change detection is the process of determining and/or describing change based
on coregistered, multitemporal remotely sensed data. The two principal approaches to
change detection are 1) post-classification techniques, where independent classifications
are compared and 2) pre-classification or merged data techniques where simultaneous
analysis of multitemporal data occurs (Malila, 1980; Muchoney and Haack, 1994). Post-
classification techniques have significant limitations. The comparison of land cover clas-
sifications for different dates does not allow the detection of subtle changes within a land
cover class. Also, the change map product of two classifications exhibits accuracies
similar to the product of multiplying the accuracies of each individual classification
(Stowe et al., 1980). Merged data techniques include image differencing/ratioing, change
vector analysis, spectral-temporal (layered-temporal) change classification, regression
techniques and principal components analysis.

The Land-Cover Change Parameter employs the pre-classification or merged data ap-
proach. Rather than analyzing isolated dates from two separate time periods, it is based
on a comparison of the temporal development curve, or time-trajectory, for successive
years of indicators. The indicators, derived from remotely sensed data, include such vari-
ables as vegetation indexes, surface temperature, or spatial structure (Lambin and Stra-
hler, 1994a) and are provided by the 32-day composited database assembled for land
cover classification.
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2.2.4.1 Change Vector Analysis

The primary change detection technique for the 1-km Land-Cover Change Parameter
is change vector analysis (Lambin and Strahler, 1994b). In this technique, each annual
multitemporal set of indicator values is taken as a point in multitemporal space, and
points from successive years are connected by a change vector, also in multitemporal
space. The direction of the change vector quantifies the change process, while the mag-
nitude of the change vector quantifies the amount of change (Lambin and Strahler,
1994b). Change vectors applied to different indicators reveal different change processes
or different aspects of change processes (Lambin and Strahler, 1994a).

The application of change vectors in remote sensing was first described by Malila
(1980) and by Colwell and Weber (1981), although the change vectors in these studies
were multispectral rather than multitemporal. Michalek et al. (1993) applied multispectral
change vectors to the monitoring of coastal environments. Change vector analysis in the
temporal domain lends itself to AVHRR applications, since this instrument provides data
with a high temporal frequency. Prior studies of change using AVHRR have used annual
integrated NDVI, or isolated dates of NDVI or untransformed data. Examples are the
studies of change in the Sahel of Tucker et al. (1986, 1991), Hellden and Eklundh (1988)
and Hellden (1991); or studies of large-scale tropical deforestation by Tucker et al.
(1984), Nelson and Holben (1986), Woodwell et. al. (1987), and Malingreau et al.
(1989). While the procedures used in these studies are appropriate to detect abrupt land-
cover changes such as forest clearing, biomass burning, or the impact of a severe drought,
the detection of more subtle forms of change, such as those associated with climate
change or with slow rates of land degradation, requires a more sophisticated approach
such as change vector analysis.

Change vector analysis has been explored in several studies that have been partially
supported by, or coordinated with, the MODIS 1-km land cover effort. These have fo-
cused on multitemporal datasets of Africa at LAC and GAC resolutions made available
by J.-P. Malingreau (Joint Research Center, Ispra, Italy). In a study of two years of LAC
NDVI data in the Sahel region, change vectors were calculated using monthly maximum-
value composites, then subjected to principal components analysis (Lambin and Strahler,
1994b). The components were related to: 1) the timing of the start of the growing season;
2) vegetation senescence rates in savannas during the onset of the dry season; 3) vegeta-
tion senescence rates in herbaceous covers during the onset of the dry season; and 4) dif-
ferences produced by haze and cloud contamination (Lambin and Strahler, 1994a). The
analysis clearly demonstrated the ability of the technique to detect subtle variations in
regional phenology, thus providing a basis for separating natural temporal variability
from more permanent changes induced by human activity.

This analysis was extended to compare maximum-value composites of NDVI with
maximum-value composites of surface temperature and spatial structure (Lambin and
Strahler, 1994a). Spatial structure was quantified by calculating the standard deviation of
NDVI values within an adaptive three-by-three pixel window. In the adaptive window
procedure, the standard deviation is computed for each of nine three-by-three windows to
which a pixel belongs, and the minimum value is selected (Woodcock and Ryherd, 1989).
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In this way, the texture measure is not inflated artificially by the contrast between land
cover boundaries.

The analysis showed these indicators to have a low degree of redundancy. NDVI
change vectors are driven by seasonal changes in rates of vegetation activity; surface
temperature change vectors are driven on a shorter time scale by rainfall events, espe-
cially in the drier environments; and NDVI texture displays a seasonal variability that
must be taken into account when assessing long-term change. Later studies of change in
NDVI texture in the same region confirm the diagnostic nature of the temporal pattern of
spatial heterogeneity (Lambin, 1995).

The change vector technique is the most mature of the available techniques suited to
the 1-km Land-Cover Change Product, and thus will be the basis for initial 1-km Land-
Cover Change Product provided early in the postlaunch period. Other approaches will be
explored simultaneously, especially at our intensive study sites. These techniques include
neural network-based change detection, principal components analysis and Gramm-
Schmidt orthogonalization.

2.2.4.2 Neural Network-Based Change Detection

Artificial neural networks have only recently been applied to change detection. Gopal
et al. (1996) have been evaluating the use of the fuzzy ARTMAP neural network for land
cover classification and change detection at global scales using multitemporal AVHRR
NDVI. These techniques have also been applied locally in a supervised approach to de-
tect changes in forest cover attributes over time (Gopal and Woodcock, 1996).

The artificial neural network used in a supervised approach to develop the Land
Cover Parameter, by its nature, includes a change detection component. As new data are
presented to the Fuzzy ARTMAP neural network, the input either matches an existing
category, or a new category must be created. If a new data presentation does not match an
existing category then it will be necessary to determine whether the new data represent a
fundamentally new condition (change) or whether the vigilance parameter needs to be
relaxed so that an existing category (presumably a pixel’s previous category) can now
accommodate the new input. This feature is especially useful for flagging change in the
training process, when training data may be from an earlier period.

Another feature of neural network classifiers is that probability of membership by
class can be evaluated on a pixel-by-pixel basis to track the probability that a specific
pixel belongs to a certain class. When a specified threshold has been crossed, that pixel
has moved into a new class and a categorical change has occurred. For the 1-km Land-
Cover Change Parameter, a direct supervised approach to change detection using neural
networks (G opal and Woodcock, 1996)  will also be investigated for targeting specific
types of change in specific areas.

2.2.4.3 Principal Components Analysis

Principal components analysis, or the related Karhunen-Loeve (K-L) transformation
(Duvernoy and Leger, 1980), is a multivariate statistical technique in which data axes are
rotated into principal axes, or components, that maximize data variance. The original data
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are then transformed to the new principal axes, or components. In this manner, correlated
data sets can be represented by a smaller number of axes, while maintaining most of the
variation of the original data. PCA has been widely applied to detect and to isolate and
determine the nature of changes in the remote sensing signal over time (Byrne et al.,
1980; Muchoney and Haack, 1994). For the 1-km Land-Cover Change Parameter, PCA
will serve two functions. First, it will be used as part of the QA procedure, as a means of
evaluating the nature of variance in the time series for anomalies and artifacts due to sen-
sor characteristics and data processing. Second, PCA will be used at the intensive studies
sites for land cover change to evaluate the performance of the change vector and neural
network techniques.

2.2.4.4 Gramm-Schmidt Transformation

The Gramm-Schmidt orthogonalization change detection technique (Collins and
Woodcock, 1994) will be employed in the QA process to evaluate the global change de-
tection algorithm (change vector). It may also be used to discriminate specific types of
change or region-specific change, and to describe the nature of change as determined by
change vector analysis. Gramm-Schmidt is a more physically-based, less-empirical ap-
proach to rotational transformation than PCA. Gramm-Schmidt change detection is a
modification of the technique that was initially used to derive coefficients of the tasseled-
cap transformation for single-date imagery (Kauth and Thomas, 1976) to accommodate
multitemporal data. In this case, the coordinate scores of rotated multitemporal pixel
vectors directly represent inter-date change.

2.3 Land Cover Units

The primary objective of the land cover parameter is to facilitate the inference of bio-
physical information from land cover for use in regional and global modeling studies.
Thus, the specific classification units of land cover need not only to be discernible with
high accuracy from remotely-sensed and ancillary data, but also need to be directly re-
lated to physical characteristics of the surface and primarily to surface vegetation. A set
of 17 such global land cover classes has been developed by the IGBP-DIS in conjunction
with the IGBP Core Projects specifically for this purpose (Belward, 1996). They are to be
applied to a classification of the global 1-km composited AVHRR LAC NDVI database
assembled at EROS Data Center that is now nearing completion (Belward and Loveland
1995, Belward, 1996). Since the IGBP system of units was developed for a global land
cover product at a similar resolution, 1 km for a similar purpose (biophysical parameteri-
zation for modeling) we plan to use the IGBP classification for the MODIS Land Cover
Product.

Table 1 provides a list of the IGBP land cover units with accompanying descriptions.
The list includes eleven classes of natural vegetation, three classes of developed and mo-
saic lands, and three classes of nonvegetated lands. The natural vegetation units distin-
guish evergreen and deciduous, broadleaf and needleleaf forests, where one of each pair
of attributes dominates; mixed forests, where mixtures occur; closed shrublands and open
shrublands; savannas and woody savannas; grasslands; and permanent wetlands of large
areal extent. The three classes of developed and mosaic lands distinguish among crop-
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lands, urban and built-up lands, and cropland/natural vegetation mosaics. Classes of non-
vegetated land cover units include snow and ice; barren land; and water bodies.

Note that the IGBP classes can be relabeled (cross-walked) to provide compatibility
with current and future systems used by the modeling community. Table 2 provides an
example in which the IGBP classes are translated to three other schemes. SiB2 (Sellers,
et. al, 1994) is a surface-atmosphere interaction model for use in GCMs; the classifica-
tion of Running and Nemani (Nemani and Running, 1996; Running et. al., 1994a; Run-
ning et.  al., 1995) is intended primarily for parameterization of global carbon and nutri-
ent cycle models; and Myneni's classification is used in radiative transfer modeling for
the MODIS and MISR LAI/FPAR products. For nearly all classes in these schemes, there
is a direct mapping of one or more IGBP classes to their equivalents. A problem arises
where some classes have no equivalents. For example, wetlands and urbanized areas do
not appear in these three schemes, presumably because they are not recognized in the
models receiving the land cover type input. However, these classes may be quite impor-
tant for trace gas emission models, for example. The IGBP strategy was to recognize
those classes that would be most useful across all the modeling disciplines of the IGBP,
in effect requesting modelers to consider all relevant classes with significant areal extent
on the earth's land surface.

2.3.1 Biophysical Parameterization

Taken together, the sets of natural vegetation and developed lands units can be used to
differentiate several fundamental distinctions among cover types that are essential for
ecological process modeling. One of these is annual vs. perennial habit, distinguished by
whether or not the vegetation retains perennial or annual aboveground biomass. This at-
tribute separates vegetation with permanent respiring biomass (forests and woody-
stemmed shrubs) from annual crops and grasses that go through nongrowing season peri-
ods as seeds or below-ground structures only. The annual-perennial distinction allows
inference of several critical physiological attributes of plants. For example, in a global
synthesis of plant gas exchange rates, Korner (1993) found on average that annual plants
maintained a 50 percent higher leaf photosynthetic capacity than perennial plants.
Biomass permanence, as it relates to plant height, also is the major vegetation determi-
nant of the surface roughness length parameter that climate models require for energy and
momentum transfer equations.

Another fundamental attribute that is distinguishable using this set of units is leaf
longevity, which distinguishes between evergreen and deciduous plant covers. This at-
tribute is a critical variable in carbon cycle dynamics of vegetation, and is important for
seasonal albedo and energy transfer characteristics of the land surface. The leaf longevity
class defines whether a plant must completely re-grow its entire canopy each year, or
merely a portion of it, with direct consequences to ecosystem carbon partitioning, leaf
litterfall dynamics and soil carbon pools. Reich et al. (1992) suggests that canopy con-
ductance and maximum photosynthetic rate are inversely proportional to leaf longevity.
Hence, certain global attributes of canopy gas exchange capacity may be inferred based
on a leaf longevity criterion.
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Table 1. IGBP Land Cover Units
Natural Vegetation

Evergreen Needleleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Almost all trees remain green all year. Canopy is never with-
out green foliage.

Evergreen Broadleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Almost all trees and shrubs remain green year round. Canopy
is never without green foliage.

Deciduous Needleleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Consists of seasonal needleleaf tree communities with an
annual cycle of leaf-on and leaf-off periods.

Deciduous Broadleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle
of leaf-on and leaf-off periods.

Mixed Forests Lands dominated by trees with a percent cover >60% and height exceeding 2
meters. Consists of tree communities with interspersed mixtures or mosaics of the
other four forest types. None of the forest types exceeds 60% of landscape.

Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover
>60%. The shrub foliage can be either evergreen or deciduous.

Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover
between 10-60%. The shrub foliage can be either evergreen or deciduous.

Woody Savannas Lands with herbaceous and other understory systems, and with forest canopy
cover between 30-60%. The forest cover height exceeds 2 meters.

Savannas Lands with herbaceous and other understory systems, and with forest canopy
cover between 10-30%. The forest cover height exceeds 2 meters.

Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.
Permanent
Wetlands

Lands with a permanent mixture of water and herbaceous or woody vegetation.
The vegetation can be present in either salt, brackish, or fresh water.

Developed and Mosaic Lands
Croplands Lands covered with temporary crops followed by harvest and a bare soil period

(e.g., single and multiple cropping systems). Note that perennial woody crops
will be classified as the appropriate forest or shrub land cover type.

Urban and Built-Up
Lands

Land covered by buildings and other man-made structures.

Cropland/Natural
Vegetation Mosaics

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no
one component comprises more than 60% of the landscape.

Non-Vegetated Lands
Snow and Ice Lands under snow/ice cover throughout the year.
Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10%

vegetated cover during any time of the year.
Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bod-

ies.

A third vegetation attribute recognizable within the IGBP units is the leaf type or
shape of the dominant vegetation cover. Three leaf shapes are distinguished among the
various categories: needleleaf, broadleaf, and graminoid (grasses). This attribute also cor-
relates well with key ecological parameters for biogeochemical modeling. Running and
Hunt (1993) defined maximum leaf area index values of 10, 6 and 3, and maximum



MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change 17

Table 2. Classification System Comparisons
Classification

IGBP SiB2 Biome Running & Nemani Myneni
Objective

General Model Parame-
terization

Surface Interactions in
GCMs

Carbon and Nutrient
Cycling Models

Radiative Transfer for
LAI, FPAR

Class Breakdown
Evergreen Needleleaf
Forests

Needleleaf-Evergreen
Trees (4)

Evergreen
Needleleaf

Needle Forests

Deciduous Needleleaf
Forests

Needleleaf-Deciduous
Trees (5)

Deciduous Needleleaf Needle Forests

Evergreen Broadleaf
Forests

Broadleaf-Evergreen
Trees (1)

Evergreen
Broadleaf

Leaf Forests

Deciduous Broadleaf
Forests

Broadleaf-Deciduous
Trees (2)

Deciduous
Broadleaf

Leaf Forests

Mixed Forests Broadleaf and Nee-
dleleaf Trees (3)

Woody Savannas C-4 Grassland (6) Savannas Savanna
Savannas C-4 Grassland (6) Savannas Savanna
Grasslands C-4 Grassland (6) Grasses Grasses/Cereal Crops
Closed Shrublands Dwarf Trees and

Shrubs (8)
Shrublands

Open Shrublands Shrubs with Bare Soil
(7)

Shrublands

Croplands Agriculture or C-3
Grassland (9)

Broadleaf Crops

Cropland/Natural
Vegetation Mosaics
Permanent Wetlands
Urban and Built-Up
Lands

canopy conductance values of 1.6, 2.5, and 5.0 mm/sec, for needleleaved tree,
broadleaved tree, and grass covers, respectively.

Still other intrinsic biophysical parameters may be inferred from these units. For ex-
ample, Dorman and Sellers (1989) assigned a series of optical properties, physiological
properties and physical parameters to a set of vegetation classes, based on those of Mat-
thews (1983) and Kuchler (1983), specifically for global application to the Simple Bio-
sphere Model of land surface-atmosphere interaction (Sellers et al., 1986). In a somewhat
different application, Sellers et al. (1994) devised an algorithm for determining global
FPAR, LAI, and canopy greenness fraction from monthly composited NDVI at 1-degree
resolution. Although the method is based on NDVI, their algorithm stratifies NDVI-
FPAR-LAI relationships by vegetation cover types, using broad structural classes similar
to those of the IGBP classification. Note that FPAR and LAI will be produced from
MODIS using separate biogeophysical algorithms in MODIS Product MOD15.
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2.3.2 At-Launch Provisional Land Cover Parameter

Because input for the MODIS Land Cover Parameter will not be prepared until a
time-trajectory of radiometric measurements spanning at least one year is acquired, there
is a need for a provisional, at-launch parameter. This provisional parameter will be used
by the Land Team in preparation of several at-launch land products, including LAI/FPAR
(MOD15), annual net primary productivity and photosynthesis parameter (MOD16,
MOD17), snow cover (MOD10), and BRDF/Albedo (MOD43), to infer various types of
biophysical information as required for their investigations.

The likely source of this provisional parameter is the IGBP global land cover data-
base described above (Belward and Loveland, 1995; Belward, 1996). This database is
being constructed by applying an unsupervised clustering and labeling technique to the
global composited NDVI 1-km database assembled at EROS Data Center. The dataset is
being prepared in five segments (North America, South America, Africa, Europe, and
Asia); at the time of writing of this document, North and South America were complete,
and Africa was nearly complete. The project is scheduled to release a global product in
June, 1997.

It will be important provide a quality assessment of the at-launch product. Validation
data being generated to test the IGBP product could be one such source. Other sources of
information will also be used including validation data sets derived from results of the
Landsat Pathfinder Global Land Cover Test Sites and Humid Tropical Pathfinder proj-
ects. These various products should be used to assess the quality of the IGBP product and
other similar products as available.

2.4 Spatial Resolution

The Land Cover Product will be produced at 1-km spatial resolution. This scale is the
finest that is practically achievable with the MODIS instrument. Although the MODIS
land bands are imaged at 250- and 500-m spatial resolution, these are nominal values for
nadir pixels. At the edge of the MODIS swath, pixels grow by a factor of 2 in the along-
track direction and by a factor of 5 in the across-track direction. In addition, there will be
geolocation error in computing the center of each pixel that is produced by uncertainties
in the knowledge of the location of the spacecraft and its orientation. The best current es-
timates of pointing error are ±85 m along-track and ±153 m across-track (MODIS geolo-
cation workshop, 8/8/96, GSFC). These are three standard-deviation (3 sigma) values
projected to nadir, and will increase with look angle in a fashion similar to that of pixel
size.

Geolocation errors, together with pixel size growth, give an effective instantaneous
field of view (EIFOV) of 656 m in the along-track direction and 960 m in the across-track
direction for the composited sequence of measurements input to the 32-day land cover
database. This EIFOV does not include optical blurring or scatter within the instrument,
and thus is a conservative estimate of effective spatial resolution. Moreover, multidate
images will not overlap perfectly, and thus resampling is always necessary. This effect
will further smooth the data.
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Given these effects, it seems prudent to use a grid cell size of 1-km. Finer resolution
information would be redundant and incur significant costs to produce and store.

The 1-km spatial resolution is well-suited to the needs of the global and regional
modeling community. In a recent report, the IGBP-DIS Land Cover Working Group
noted (IGBP, 1992b):

“There is an emerging view regarding the appropriate scale for analyzing land
cover and land cover conversion. The suitability of 4-8 km GAC data for deline-
ating broad land cover types and phenology has been demonstrated (Malingreau
1986, Malingreau and Tucker 1987). The utility of 8-15 km data for land cover
classification and phenology has also been shown by a number of authors (e.g.,
Justice et al., 1985, and Tucker et al. 1985), but it is too coarse for monitoring
land cover conversion and reliable detection of land transformation requires
resolutions of 1 km or finer (Townshend and Justice 1988). This observation is
supported by detailed analyses of tropical deforestation, which suggests that even
1 km data might be too coarse for quantifying the area and rate of deforestation in
some regions (C. J. Tucker personal comm.), although a 1 km data set would as-
sist stratified sampling.”

These considerations led directly to the development of the IGBP 1-km Land Cover
Database described above. In addition, 1-km scale input is required for other 1-km
MODIS land products as noted in section 2.3.2.

Note also that at least three recent studies on the effect of spatial resolution on map-
ping of land cover (Moody and Woodcock, 1994; Mayaux and Lambin, 1995; Pax Len-
ney and Woodcock, 1996) have shown little difference in proportional errors due to ag-
gregation in the 500 m–1 km range. Rather, it is only at finer resolutions—100 m or
less—that proportional errors change. Thus, finer resolution—500 m for example—only
serves to increase spatial precision rather than capture a different level of spatial pattern.

2.4.1 Aggregation and Scaling

The effect of scaling on land cover proportions has been explored in the research lit-
erature in recent years. Several studies have established that changing the spatial resolu-
tion of land cover maps has important effects on the proportion of a landscape occupied
by a particular land cover type (Henderson-Sellers et al., 1985; Turner et al., 1989;
Moody and Woodcock, 1994; Moody and Woodcock, 1995). In general, the proportions
of smaller, more fragmented cover types decrease with aggregation, while those of the
larger classes increase. Similar effects were noted by Townshend and Justice (1988), who
observed large changes in the proportions of test site images falling within specific NDVI
ranges as scenes were progressively degraded to coarser resolutions. These observations
conform with more theoretical results obtained by Jupp et al. (1988, 1989) and Wood-
cock and Strahler (1987) on scaling, resolution, and spatial pattern.

The results obtained by these researchers suggest that where different covers differ-
ently influence biophysical relationships (e.g., NDVI-FPAR relationships, Sellers et al.,
1994), the aggregated behavior of an areal unit will be different from that of a single
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cover type that dominates it. This effect has been documented in surface energy balance
modeling by Henderson-Sellers and Pitman (1992).

There are two further implications of the scaling behavior of land covers for the
MODIS product. First, if 1-km land cover classes are to be aggregated to a coarser grid,
the product should provide a vector of proportions by classes within coarse grid cells,
rather than a label derived from a single dominant class. In this way, users will have suf-
ficient information to treat the area as heterogeneous if desired. This approach will be
used in the Land Cover 1/4-degree Climate Modeler's Grid (CMG) Product.

A second implication lies at subpixel scales. Many studies of fine resolution satellite
imagery have established the fact that the spatial pattern structure of real landscapes is
often finer than 1 km in linear dimension (e.g., Townshend and Justice, 1988; Townshend
et al., 1992). These findings suggest that even at 1-km resolution most pixels are mixed.
If pixels are mixed and the proportions matter, then it is important to document the way
that proportions change with pixel size within ecoregions so that subpixel effects may be
accommodated in coarser-scale aggregations (Moody and Woodcock, 1995). Such docu-
mentation will require validation studies at test sites (discussed in a later section).

Several approaches to correction of cover-type proportions have been explored in the
literature. These have ranged from simple regression methods in which fine-resolution
proportions are associated with coarse-resolution spectral variables (Zhu, 1994) to regres-
sion-tree models predicting coarse-scale proportions from a suite of fine-scale spatial
pattern quantifiers using regression trees (Moody and Woodcock, 1995). In a recent study
examining the determination of tropical forest area from AVHRR LAC data, Mayaux and
Lambin (1995) provide a two-step procedure in which the Matheron index, which meas-
ures the length of boundary per unit area for a class, estimates the slope and intercept for
a regression linking fine- and coarse-resolution proportions. They recently extended their
work to inverse calibration of cover proportions using several measures of spatial tex-
tures, including a simulation of the MODIS scenario of 1-km classification with a stan-
dard deviation texture measure derived from a 250-m band (Mayoux and Lambin, 1996).
They showed that the 250-m texture was the most effective of the measures available,
reducing residuals in observed versus modeled proportions to less than 9 percent.

These studies suggest that areal proportion estimation must be done carefully with
appropriate use of fine-scale information, such as 250-m spatial texture. Moreover, pro-
portion estimation is dependent on the spectral characteristics of the classes as well as
their spatial structures. For the Land Cover Product, we will provide subpixel proportion
estimation information as an ancillary dataset for those regions in which we have suffi-
cient information to compute it. In the post-launch era, we may be able to provide a spe-
cific global product with this information.

2.5 Instrument Characteristics

Several problems have been consistently encountered in attempting to process
AVHRR data for large-area land-cover discrimination. Although the red and near-
infrared channels capture the primary variance in the vegetation signal, other spectral
bands that can provide important information in reflective wavelengths are missing. Fur-
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thermore, the AVHRR bands are broad and include some atmospheric absorption features
that unduly influence the ground signal. Despite the use of the maximum value compo-
siting procedure to screen for clouds, many cloud-covered pixels are still included in
composited images. This leads to a misrepresentation of the time trajectory and can cause
faulty classification results.

Composited images can also include large numbers of poorly-registered off-nadir
pixels, a circumstance that results in a blurred image appearance, reduced image vari-
ance, and variable within-scene spatial resolution. Part of the reason for this lies in the
instrument's conical scan mirror, which provides rotated and overlapping instantaneous
fields of view at the edge of the scan. Other limitations to the processing of AVHRR data
include poor spectral and radiometric calibration, poor pointing knowledge, and difficul-
ties in providing accompanying atmospheric correction.

The design of the MODIS instrument alleviates many of these problems. Seven of the
MODIS bands in the reflective region have been selected expressly for land applications
based on experience with Landsat Thematic Mapper and AVHRR. These bands are posi-
tioned to sample the solar spectral curve in wavelength regions that provide specific in-
formation about the land surface, while their bandwidths are chosen so as to maximize
radiometric precision and avoid atmospheric absorption. This will lead to the production
of vegetation indices that are more meaningful and more resistant to atmospheric effects
than those produced from AVHRR data, and will also provide for greater utility and in-
terpretability of the individual bands. All of the reflective bands and several combinations
of these bands will be potentially useful for discriminating land cover units and monitor-
ing change (Townshend et al., 1991). In addition, thermal channels may also prove to be
useful in characterizing and discriminating land cover types (Townshend et al., 1991).

In contrast to AVHRR, MODIS possesses an extensive on-board capability for ra-
diometric and spectral calibration. Calibration subsystems include for shorter wave-
lengths the spectroradiometric calibration assembly (SRCA), the solar diffuser and solar
diffuser stability monitor, and, at longer wavelengths, a blackbody for thermal band cali-
bration. The instrument will also view dark, deep space as part of its normal scan, and at
certain times will image both deep space and the moon as part of the calibration proce-
dure. The inclusion of specific bands for atmospheric sensing on the MODIS instrument
provides for dynamic atmospheric correction and allows the estimation of surface direc-
tional reflectances in the MODIS land bands (King et al., 1991) (MOD09; 2015).

The use of surface reflectances instead of top-of-the-atmosphere radiances allows a
strategy for assembling multidate imagery without relying on specific transforms, such as
NDVI, that suppress atmospheric noise. MODIS bands also allow the application of mul-
tiple algorithms for the detection of different types of clouds so that cloud-covered pixels
may be identified reliably (MOD06). Moreover, in the case of high, thin cirrus clouds,
data can be corrected for cloud effects. With atmospherically-corrected and cloud-
screened data, measurements can be composited through the fitting of semiempirical
BRDF functions (MOD43), allowing calculation of the best-fit nadir reflectance in each
of the seven land bands within a 16-day period. In this way, data are obtained that are
free of clouds, atmospheric contamination, and angular view and illumination effects.
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Rectification has posed particular difficulties for AVHRR processing in producing
composited images, analyzing time trajectories of land surface data, and comparing data
from multiple time periods to assess change. These problems should be significantly re-
duced with the in-flight navigation capabilities of MODIS. Geolocation error estimates,
discussed in more detail in section 2.4, combined with the growth of pixel size with scan
angle, will provide an effective pixel size close to 1-km using the 500-m and 250-m land
bands as inputs. Although AVHRR LAC data are commonly composited to 1-km spatial
resolution, the data are quite redundant at that scale. For example, normal geolocation
error for EDC processing of LAC data is on the order of 2-3 pixels (T. Loveland, per-
sonal communication). This error smooths the data greatly and is especially noticeable at
abrupt contrast boundaries, such as coastlines. MODIS will thus provide a very signifi-
cant improvement to 1-km data quality.

3. Algorithm Description

3.1 Overall Algorithm Structure

3.1.1 Practical Description of Algorithm

3.1.1.1 Land Cover Parameter

Figure 1 provides an overview of the Land Cover algorithm logic. In brief, reflected
and emitted radiation, as measured remotely through time and over space, are combined
with ancillary data to provide a database for distinguishing land covers that includes
spectral, directional, spatial, temporal, and collateral information. This database is proc-
essed using a neural net classifier.

3.1.1.1.1 Database Assembly and Compositing

In the temporal dimension, remotely sensed data are not retained in full temporal
resolution. Rather, the volume of measurements is reduced to a set of summary meas-
urements for each cell in a 1-km grid. In a process similar in principle to the maximum-
value compositing of AVHRR data, incoming remotely sensed data are sorted and pruned
during a 32-day period to a single composite set of representative values associated with
each grid cell. A 32-day period is selected because a number of studies using AVHRR
data acquired over large regions have concluded that a period of at least 30 days is re-
quired to assemble a dataset that is largely uninfluenced by cloud cover (e.g., Lambin and
Strahler, 1994a and 1994b; Moody and Strahler, 1994). The 32-day cycle is keyed to the
platform orbit, which repeats in a 16-day cycle and 8-day half cycle.

 Remotely sensed inputs to the 32-day database include:

• Land/Water Flag.
Locations permanently covered by water are not investigated by the MODIS Land
Cover Classification algorithm. Each record in the 32-day database includes a
land/water flag retrieved from an ancillary Level 3 mask. Currently, several such
products are under consideration for EOS as a whole.
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• Surface Reflectances.
The MODIS BRDF/Albedo product generation executive (MOD43) provides na-
dir-equivalent reflectances (as an interim product) to MODIS Land Cover in all
seven land bands at 1-km resolution. Each observation in this global dataset is the
modeled reflectance that would be observed for a given ground location at nadir
with the median solar illumination angle for the overpasses over a 16-day period.
In effect, this product “composites” all cloud-free observations over the 16-day
period using a BRDF model rather than a maximum-value criterion. Thus, two
“looks” are available over a 32-day period.

• Texture Channel.
The MODIS BRDF/Albedo Product (MOD43) includes a spatial texture layer.
Spatial texture is measured as the ratio of standard deviation to mean of the 250-m
surface reflectances falling within each 1-km grid cell during a 16-day period.
Studies have demonstrated the utility of this spatial measure in classification of
land covers (e.g., Borak and Strahler, 1996). Since texture measures across spec-
tral bands are typically strongly correlated, only the texture for MODIS Band 2
(near-infrared, 250-m nominal resolution) is used. This band provides a strong
spectral contrast in regions of varying vegetation cover. As with the reflectance
inputs, two looks are available over a 32-day period.

• Vegetation Index.
Maximum-value composited vegetation index is provided by the MODIS Level 3
Vegetation Index Product (MOD34). The spatial resolution of this input is 250-m
and its temporal resolution is 16 days. For the 32-day database, the 250-m data
from two 16-day products are maximum-value composited, and then spatially av-
eraged to 1-km.

• Snow/Ice Cover.
The MODIS Level 3 Snow/Sea Ice cover Product (MOD33) provides 10-day
maps of snow and sea ice cover at 1-km resolution. Only the land portion of this
product is used. Because this input product is out of temporal phase with the 32-
day database, a linear interpolation across coverage periods is applied.

• Land Surface Temperature.
The MODIS Land Surface Temperature Product (MOD11) provides 8-day com-
posites of land surface temperature. Temperature data are nominally at 1-km
resolution. The product is a maximum-value composite.

• Directional Information.
The MODIS BRDF/Albedo Product (MOD43) includes parameter sets describing
the fits of semiempirical BRDF models to surface reflectances obtained from
MODIS and MISR in the seven land bands. For input to the Land Cover Product,
parameters describing the applicable BRDF model type and descriptors of BRDF
shape are extracted from this product along with the relevant quality control in-
formation. The first parameter, BRDF model type, coarsely preclassifies the type
of landscape viewed in terms of the density of intracrown and intercrown gaps.
The possible BRDF models differ in terms of their assumptions of leaf density
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(low/high leaf area index) and ground object density (sparse/dense). Furthermore,
specular components are indicated. The type of land cover viewed is also charac-
terized by the type of BRDF shape provided by the best-fitting BRDF model. This
provides for a second parameter, which will be derived in the form of a normal-
ized index characterizing the relative amount of volume to surface scattering in
the BRDF observed. If shadows or mutual shadowing of crowns are prominent in
a scene, the index will indicate the presence of discrete ground elements (for ex-
ample shrubs, tree crowns and other rough surfaces). If volume scattering out-
weighs surface scattering, a rather homogeneous layer of vegetation may be as-
sumed. Relationships between BRDF and land cover are currently under investi-
gation for 3 different ecozones using AVHRR data (see MODIS BRDF/Albedo
Product ATBD for details). Generally, the value of using BRDF information in
land cover classification derives from the fact that relatively coarse multidirec-
tional class signature boundaries fall across the boundaries of spectral classes.
This allows identification of subtleties that may not be apparent in spectral data
alone.

 The compositing procedure involves examining the overall quality associated with
each set of measurements in order to select the best measurements available for the 32-
day period. The “best” data are generally those produced with the highest degree of sci-
entific validity according to the MODIS Science Team members responsible for gener-
ating the input datasets, i.e., values with optimal quality flags. Often, the degree of valid-
ity is related to cloud cover, but it also takes other elements of the production stream into
account. Inputs that contain no valid information over a 32-day period are treated as
missing data.

Scientifically useful observations from input products that are produced at shorter
time steps than 32 days are aggregated to a 32-day time step in the following ways. Land
surface temperature is maximum-value composited. Mean weekly snow cover is aver-
aged over the 32-day period. The inputs that are provided by the MODIS BRDF/Albedo
Product (nadir reflectances, spatial texture and directional information) are composited in
a common manner. For each measurement, the quality associated with each of the two
observations available over a 32-day period is examined, and whichever exhibits the
higher quality is retained for the 32-day database.

The composited database includes 20 values for each pixel: 7 spectral reflectances
and a quality flag; 2 BRDF parameters and a quality flag; single values for spatial texture,
surface temperature, vegetation index, and snow cover (each with a quality flag); and a
land/water flag. Using a value of 1.5 × 108 sq. km. for the earth's land surface, the total
size of the 32-day database is approximately 14 gigabytes.

3.1.1.1.2 Data Reduction

The classification algorithm operates on a sequence of twelve 32-day databases along
with an EOS-wide 1-km topographic database to generate seasonal land cover labels.
This corresponds to a data volume of approximately 200 gigabytes, which is a prohibitive
volume of data to process in the production environment. In addition, some of the input



MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change 25

streams are expected to contain redundant information. Therefore, data reduction is ap-
plied to the full input measurement space.

Data reduction has been used extensively in remote sensing and classification prob-
lems. Probably the most common approach is to employ some sort of linear transforma-
tion on the original dataset to produce a smaller set of factors or components (Kauth and
Thomas, 1976; Jackson, 1983; Ingebritsen and Lyon, 1985). Most of the original variance
is retained with a significant reduction in data volume.

The decision tree classifier (DTC) provides an approach to data reduction that is well
known in the pattern recognition literature, but has appeared relatively recently in the re-
mote sensing literature (Michaelsen et al., 1994; Hansen et al., 1996; Borak and Strahler,
1996, section 3.1.4.1.1). The DTC operates in a supervised mode, and thus requires data
from training sites. The algorithm employs tree-structured rules that recursively partition
the input dataset into increasingly homogeneous subsets based on a splitting rule
(Breiman et al., 1984). These subsets are represented as nodes in the tree structure. The
top node root) consists of the entire input dataset. Nodes at the bottom of the tree (leaves)
are the output cover classes. The hierarchical nature of the classifier thus separates im-
portant discriminatory information near the top of the tree from redundant information
near the bottom of the tree.

Another method of feature reduction is the use of simple summary variables, such as
maximum and minimum values, max-min differences, annually integrated values, etc.
These methods have been explored by Lloyd (1990), and more recently, by DeFries et al.,
1995.

At present, at-launch data reduction algorithm development is continuing. The pattern
recognition field is in rapid development at this time and new algorithms may render old
ones obsolete. Final selection of  an at-launch data reduction algorithm may be dependent
on experience with actual MODIS data. At any rate, the at-launch data reduction algo-
rithm process requires hands-on work at the Scientific Computing Facility, as results will
be sent to the DAAC for incorporation into the production environment.

3.1.1.1.3 Classification

In the classifier stage, a sequence of 32-day databases is input to the classifier along
with the EOSDIS 1-km topographic database (MOD03). In the post-launch period, the
32-day sequence will involve two years of acquisitions. During the first two years of ac-
quisitions, the sequence will necessarily be shorter. However, we believe at this time that
at least one year of observations will be required to make the product. The 32-day data-
bases and ancillary data are then processed by a neural network classifier. Recent appli-
cations of neural networks in classification of remotely sensed data were discussed in
section 2.2.2. The exact architecture of the neural network classifier will not be deter-
mined until the near-launch period. Neural networks and classifiers are evolving so rap-
idly at this time that it would be unwise to commit to a specific architecture at present. In
fact, we may expect the classification algorithm to continue to change during the time
span of MODIS data acquisition as techniques improve. A candidate architecture is de-
scribed in detail in the following section.
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For greater processing efficiency and classification accuracy, processing will proceed
by continents. Note that the full spectral and temporal resolution of the land cover data-
base may not be needed within each continental region. For example, trials may show
that classification accuracy remains unaffected if the annual cycle is represented by a
subsample of three or four months. Or, perhaps only a subset of variables within each 32-
day composite will be required. In any event, we may predict that the choice of months or
variables will vary from continent to continent.

Although a supervised neural network classifier is the candidate classification algo-
rithm at this time, it is possible that an unsupervised classifier or a combination of super-
vised and unsupervised classification will prove more successful in some ecoregions. A
further extension is the first use of a simple classifier (e.g., parallelepiped) followed by a
more sophisticated classifier applied only to equivocal pixels. This would increase com-
plexity, but save computation power. These options will be explored as algorithm devel-
opment proceeds.

3.1.1.2 Land-Cover Change Parameter

The Land-Cover Change parameter will rely primarily on the change vector tech-
nique, which will compare pixel-by-pixel the temporal development curve of a set of bio-
physical and spatial indicators derived from MODIS data. These features are described
more fully in section 3.1.1.1.1 above. The change vector technique represents the sea-
sonal dynamic of these indicators by a point in a multidimensional space, with each di-
mension of this space corresponding to a time-composited observation. Changes in the
accumulated value and seasonal dynamic of the indicator between successive years are
quantified by a change vector between successive points in the temporal multidimen-
sional space. The magnitude of change is reflected by the length of the vector, while its
direction in multitemporal measurement space indicates the timing and nature of the
change.

Where a long history of change observations exists, a useful reference standard for
change may be a “best-conditions” year, a monthly time trajectory that is constructed for
every pixel from an analysis of its historical performance over the period of record. In
this process (Lambin and Ehrlich, 1995), the best ecological conditions that occurred
throughout the observation period are identified for each pixel by selecting the maximum
(or minimum) value of an indicator (e.g., maximum NDVI) for each month in the annual
cycle. A best-conditions year is thus constructed that takes into account the ecological
and edaphic constraints of every pixel. Any land-cover change can then be expressed
with reference to this time trajectory. Note that the reference year will need to be updated
at regular intervals to integrate new observations, thus allowing for a better categorization
of change processes over multiannual periods. This approach has proven very useful in
characterizing land-cover change in Africa using AVHRR GAC data for the 1982-1991
period (Lambin and Ehrlich, 1996c).

Although the change vector technique is the best documented approach thus far to
land-cover change at coarse resolution, we also plan to examine other approaches to
change characterization. These alternative approaches are identified in section 2.2.4.
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3.1.2 Mathematical Description of Algorithm

3.1.2.1 Land Cover Parameter

3.1.2.1.1 Feed-Forward Networks Trained by Backpropagation

While there are a variety of different neural network models, most remote sensing ap-
plications have used a supervised, feed-forward structure employing a backpropagation
algorithm that adjusts the network weights to produce convergence between the network
outputs and the training data. In overview, the neural network classifier is composed of
layers of “neurons” that are interconnected through weighted synapses. The first layer
consists of the classification input variables and the last layer consists of a binary vector
representing the output classes. Intermediate, “hidden” layers provide an internal repre-
sentation of neural pathways through which input data are processed to arrive at output
values or conclusions.

In a supervised approach, the neural network is trained on a dataset for which the out-
put classes are known. In this process, the input variables are fed forward through the
network to produce an output vector. During a following backpropagation phase, the syn-
apse weights are adjusted so that the network output vector more closely matches the de-
sired output vector, which is a binary-coded representation of the training class. The net-
work weights, or processing element responses, are adjusted by feeding the summed
squared errors from the output layer back through the hidden layers to the input layer. In
this fashion, the network cycles through the training set until the synapse weights have
been adjusted so that the network output has converged, to an acceptable level, with the
desired output. The trained neural network is then given new data, and the internal syn-
apses guide the processing flow through excitement and inhibition of neurons. This re-
sults in the assignment of the input data to the output classes. The basic equations rele-
vant to the backpropagation model are presented in Fischer and Gopal (1992).

3.1.2.1.2 Adaptive Resonance Theory Neural Networks

Although the feed-forward back-propagation neural network has been shown to better
or at least equal the performance of conventional statistical classifiers in remote sensing
applications (see section 2.2.2), this architecture can require lengthy training and can
sometimes fail to converge. A newer neural network architecture, relying on adaptive
resonance theory (ART), lacks these disadvantages and, in early trials, shows signifi-
cantly higher accuracies (Gopal et al., 1994). Neural networks employing adaptive reso-
nance theory are designed to be stable enough to preserve significant past learning while
still allowing new information to be incorporated in the neural network structure as such
information appears in the data input stream. The description of ART networks below
follows Carpenter and Grossberg (1987a, 1987b), Carpenter (1989), Carpenter et al.
(1991a, 1991b, 1992), and Gopal et al. (1994).

The ART-1 module of Carpenter and Grossberg demonstrates the essential features of
adaptive resonance theory. This module is actually a learning structure that organizes the
patterns it receives into a consistent set of responses. In this way, its function is similar to
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that of an unsupervised classifier. The ART-1 module consists of a two-level network.
An input signal in the form of a binary vector (F0) is received by the first level (F1) and
propagated forward to the second level (F2) by a set of weights that constitute the long-
term memory. A further feature of the F2 level is that the nodes at the F2 level interact
through lateral inhibition. The result is to produce an F2 pattern vector in which only the
node associated with a single class is significantly activated. This vector is then propa-
gated backward to the F1 level where it is compared with the original input vector. If the
two patterns are close, “resonance” occurs and long-term memory is altered to include the
new observation.

If the two patterns differ significantly, the ART module enters a search mode. In this
mode, the prior active node at the F2 level is first disabled. The signal is then propagated
forward once again, but since the prior active F2 node is disabled, a second pattern asso-
ciated with a different class node is selected. This pattern is then propagated back to the
F1 level and compared with the input vector as before. If the fit is acceptable, then reso-
nance proceeds and the system has “learned” a new input pattern. If not, the second F2
node is disabled and another attempt to find a good match is made. If cycling in this
fashion does not eventually produce a good match, the system adds a new F2 node and
associates the input pattern with it in long-term memory.

Further developments of adaptive resonance theory to neural networks by Carpenter
and coworkers include ART-2 and fuzzy ARTMAP. ART-2 modifies ART-1 so that it no
longer requires a binary input vector, but instead may accept analog inputs. (A form of
scaling is applied to the inputs first, however.) Note that neither ART-1 nor ART-2 are
associative memory systems, in which associations between pattern pairs are learned with
the ability to be recalled. Fuzzy ARTMAP, however, is such a system.

In fuzzy ARTMAP, two ART-2 modules (ARTA and ARTB) are connected together
through an associative learning network called a map field (ARTAB). In the training
phase, input vectors and desired output vectors are presented as pairs to F2 and ARTB re-
spectively, and the outputs of the ART modules are associated by the map field ARTAB. If
a mismatch occurs, F2 is placed in search mode to find, and possibly learn, a better
choice. Or, a new node may be added to the F2 layer in F2 that is a better predictor of the
desired output. As noted previously in section 2.2.2, the fuzzy ARTMAP classifier has
performed very well in several trial applications to monthly-composited AVHRR LAC
data as well as to Thematic Mapper data.

Fuzzy ARTMAP is an example of newer approaches to the use of neural networks in
pattern classification. Undoubtedly neural network architectures will continue to develop
in the pre- and postlaunch periods. We plan to monitor developments in neural network
architectures, and as candidate architectures are produced, we will test them for applica-
tion to the MODIS Land Cover Parameter.

Note that both of the above techniques operate in supervised classification mode. Al-
though the supervised approach is well-suited to a situation where training data are ag-
gregated into test sites, it is possible that unsupervised approaches may be more desirable
for some regions or situations. In that event, a number of unsupervised neural network
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pattern classifiers are available and have been used on remotely sensed data with good
results (e.g., Hara et. al, 1994).

3.1.2.3 Decision Tree Classifiers

Decision trees classifiers recursively partition data into related or homogeneous
subregions based on a set of decision rules. The structure of the tree consists of a root
node, intermediates nodes or splits, and terminal nodes (leaves). Input data at the root
node is subdivided at decision nodes based on univariate and/or multivariate decision
rules (Brodley and Utgoff, 1992, 1995). Although decision trees have only recently been
applied to remote sensing data, they offer tremendous potential for classification and
feature selection. Decision trees can either be applied in independently or coupled with
other analytical procedures in hybrid classification models.

Research into the applicability of decision trees to MODIS Land Cover continues to
be conducted at both site and global scales. Lloyd (1990) used a binary decision tree clas-
sifier using multitemporal phenological indexes or metrics derived from a time series of
NDVI data to stratify vegetation phenology classes. A time series dataset was used to ex-
amine feature selection and land cover classification for a MODIS-like scenario in the
semiarid environment of the Walnut Gulch/Cochise County site (Borak and Strahler,
1996,  and section 3.1.4.1.1). The dataset consists of numerous input fields derived from
an intraannual sequence of seven Landsat TM acquisitions, along with ancillary elevation
information. A decision tree classifier selected the features that provided the best dis-
crimination among land cover types. Three classification algorithms were applied to the
reduced feature space: the decision tree itself, a maximum-likelihood classifier and an
artificial neural network (Fuzzy ARTMAP). Results indicated that decision tree classifi-
ers are useful tools for extracting essential features in data sets of high dimensionality,
and that the neural network performed best on the reduced set of features.

Brodley et al. (1996) applied univariate, multivariate and hybrid decision trees to the
global 1 degree AVHRR NDVI dataset, the Conterminous US 1-km AVHRR NDVI
dataset, and a TM data set for Lake Tahoe, California, and compared them to a linear
classifier. All decision trees outperformed the linear classifiers on all datasets. Hybrid
trees, where different classification algorithms are used in different subtrees of a larger
tree, were superior due to their ability to better resolve complex relationships among
feature attributes and class category labels. The empirical results of these studies indicate
that research should continue in the application of decision trees to land cover classifica-
tion.

3.1.2.2 Land-Cover Change Parameter

The change vector analysis method of identifying land-cover change has been pre-
sented by Lambin and Strahler (1994b). This method assesses change by calculating the
distance between the location of an indicator variable in multitemporal space at two dif-
ferent time periods on a per-pixel basis. For example, if the indicator were monthly com-
posited NDVI values, and it was desired to assess change between two subsequent years,
the difference between the location of the NDVI vector in 12-dimensional (monthly)
space for the two years would be calculated. The magnitude of this difference, or change
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vector, is representative of the magnitude of the change, and the direction of the change
vector relates to the type of change. The type of change is then characterized by the seg-
ment of the multidimensional temporal space into which the vector has moved. This ap-
proach (1) allows quantification of the intensity of change;(2) allows classification of the
type of change; (3) is based on a historical database for each pixel; and(4) is mathemati-
cally simple.

The change vector analysis procedure is simply represented by Lambin and Strahler
(1994b). In the case where a single remotely sensed variable is measured (for example
the NDVI) the temporal state of the land cover can be represented by the location of that
variable in a multidimensional space, where each dimension represents one of the time
periods for which the variable was measured. For example, the location of the variable
can be represented by the vector:

  ′ p i, y( ) = I t1( ) I t2( ) K I tn( )[ ]
where p(i,y) is the multitemporal vector for pixel i in processing period y, I are the values
of the variable of interest for pixel i at time periods t1 to tn where n is the number of time
periods at which the variable was measured. The vector magnitude represents the integral
of the variable over time periods 1, 2, . . ., n and the direction of the vector represents the
seasonal pattern. Any change in the state of a pixel’s land cover between processing peri-
ods y and z is defined by a change vector:

c i( ) = p i ,y( ) − p i, y( )
The magnitude of the change vector is simply taken as the Euclidean distance d be-

tween the two vectors:

d2 = ′ c i( )c i( )

In work by Lambin as cited above, it has been shown that the magnitude and direction of
the change vector are related to the intensity and type of change process, respectively.

A further extension is to explore the Mahalanobis distance, dM::

dM
2 = ′ c i( )V−1 i( )c i( )

where V(i) is a variance-covariance matrix of change vectors that quantifies the distribu-
tion of change vectors as observed over time within a region. This distance scales the
magnitude of a vector by the variance normally observed in its direction of change.

3.1.3 Test Sites and Training Data

The MODIS Land Cover and Land-Cover Change Parameters require ground infor-
mation for training and validation. This information will be obtained for a network of
global test sites described in the following sections. We are currently  completing the de-
velopment and population of a Global Validation and Test Site database to manage this
site information.
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3.1.3.1 Site Hierarchy

• Regional Sites.
We project that five Regional Sites will provide an appropriate scale for algorithm
testing and development, as well as at-launch and post-launch validation. Two
currently-identified Regional Sites are Central America and the Caribbean
(Central America Terrestrial Ecology Study), and the Western U.S. and Canada.
Data for these sites include multitemporal 1-km AVHRR, single-date TM data for
as much of the region as possible, ancillary environmental and climatological
data, and field inventory.

• Instrumented/Tower Sites.
As part of the larger MODLand, MODIS, and EOS activities, a network of fully-
instrumented tower sites is being developed. We will use these sites for pre-
launch evaluation as they become available and for continuous observation in the
post-launch era. They will be visited during field campaigns in order to map and
parameterize local land cover types and observe change.

• Intensive Study/Continuous Observation Sites .
A critical component to training and validation is a stratum of Intensive
Study/Continuous Observation Sites. These sites are critical to testing algorithms,
process and products. In the pre-launch period, they represent areas for which
temporal sequences of TM imagery are available. TM provides spectral coverage
similar to six of the seven MODIS land bands and can be convolution-resampled
to provide data at 250- and 500-m resolution (Barker et al., 1992). In this way, the
multispectral and multitemporal information content of MODIS imagery can be
simulated before the actual acquisition of MODIS data. Also useful is AVHRR
imagery. Although the spectral bands of the AVHRR correspond to only two
MODIS land bands, the instrument provides a source of thermal data registered to
the VNIR radiances and further simulates the angular geometry of MODIS and its
temporal repeat pattern for studies of cloud cover and compositing.

 The Walnut Gulch/Cochise County site (discussed in section 3.1.2.1.3) is an ex-
ample of a site of this type. Research at Walnut Gulch has included feature selec-
tion and land cover classification of a MODIS-simulated dataset derived from
multitemporal, spatially-degraded Landsat TM data (Borak and Strahler, 1996 and
in preparation and Section 3.1.4.1.1). These studies have clearly demonstrated the
applicability of both neural network and decision tree classifiers to a specific land
cover classification problem. In addition, the study has helped us identify proc-
essing issues that the Science Computing Facility (SCF) will face in the MODIS
processing era. We are continuing analysis and field inventory at this site in coop-
eration with the SALSA Field Campaign.

 Additional Intensive Study/Continuous Observation Sites we have identified in-
clude BOREAS, Olancho, Honduras; the Yucatan; Glacier National Park; Plumas
National Forest; Harvard Forest LTER; Hubbard Brook LTER; Virginia Coast
LTER; and Hapex-Sahel.
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• Field Validation Sites.
We are developing 100-150 sites at which remote sensing-derived data are vali-
dated through field inventory and observation. These Field Validation Sites are a
subset of our global Remote Sensing Sites. Each site consists of one or more large
polygons of homogeneous land cover that can be used in training and validation
of any land cover product. Attached to the polygon are both image segments from
selected remotely sensed data sources (AVHRR, TM, MODIS, ASTER, ETM,
Lewis, etc.) and field measurements of ecological and biophysical parameters. At
first, field data will be acquired from existing sources, such as field sampling in
Rapid Ecological Assessment studies carried out by the conservation community.
In the near term, field data will be acquired specifically for field validation sites
as travel opportunities present themselves. Friends and collaborators will also be
tapped to acquire data. Over the lifetime of the MODIS instrument program, these
sites will constitute a very useful set of consistent data for parameterization of
many ecosystem characteristics and validation of alternative classifications.

• Remote Sensing Sites.
Global training, testing and validation require that a network of remote sensing
observation sites be developed. As in the Field Validation Sites above, the data-
base will consist of polygons or grid cells of homogeneous land covers. However,
parameters (e.g., IGBP land cover class) will be inferred from manual interpreta-
tion of high-resolution imagery. This activity is currently underway using, Land-
sat TM and MSS and SPOT data, at both Boston University and the University of
Maryland, College Park. The goal is a representative network of approximately
500 sites.

3.1.3.2 Site Selection Criteria

Since the test site database will need to be representative of the earth's diversity of
land covers and types of land cover change, a site selection strategy is required. Five cri-
teria will be exercised.

• Global Representativeness.
The nature of the earth's land cover at a location is dependent on the independent
variables of climate, physiography, human activity, and ecological potential. As
these factors vary, so do the land cover types, their modes of change, and the
ecological and biophysical parameters that characterize them. Thus, any land
cover sample that is to be globally representative must cut across these factors to
sample their variation in an independent fashion. For example, it would be possi-
ble to select sites stratified by latitude, continentality, solar irradiation, precipita-
tion, elevation, or slope. This stratification would provide the best independent
means of determining and sampling the overall “representativeness” of the earth
from a climate/vegetation perspective. Yet these stratification factors are them-
selves correlated into broad regions with individual patterns of land covers and
change processes.

 Regionalization is the approach to stratification whose objective is to increase
classification accuracy by subdividing the globe into regions that minimize
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within-stratum variance and maximize between-stratum variance. Stratification by
regions is powerful and effective, but requires definition of regions. This, how-
ever, is dependent on how MODIS data organize themselves as they are forced by
the independent factors above and must thus regionalization must await the post-
launch era of MODIS earth observation.

• Change Detection Sites.
Land-Cover Change Parameter training and validation requires that the site net-
work be representative of global, regional and local change processes due to both
natural and anthropogenic factors. Change criteria include phenological class
(seasonal grassland, deciduous forest), anthropogenic (urbanization, agriculture,
conversion, biomass burning), interface (land/snow, land/water), biotic (insect and
pathogen), and hydrologic (seasonal inundation) representation.

• Indicator Sites.
Early warning and indicator sites are necessary for monitoring processes that may
be indicative of climatological or other changes. These sites include, for example,
high-elevation spruce-fir forests and ecological ecotones.

• Critical Sites/ Hotspots.
A number of sites are to be included in the network because of their particular
conservation, political, economic and/or social significance. Rondonia is an ex-
ample.

• Statistical Criteria.
A proper global sample would be drawn on a statistical basis using probabilities
of sample selection associated with each potential site. Although it may not be
possible to draw such a sample given practical limitations, statistical criteria that
could be exercised informally include sample stratification by geographical or re-
gional type; stratification by land cover or change process after these have been
determined in the postlaunch period; sample selection for variance reduction; and
sample selection optimized for change detection. Issues in global sample selection
for land cover classification accuracy assessment are described in more detail in
Belward (1996).

3.1.3.3 Site Data Sources and Institutional Cooperation

A global site network is an ambitious endeavor that requires cost sharing and inter-
institutional cooperation. Test sites are promoted to take advantage of cost savings by
using data that have already been generated and where research is continuing. This site
network is being coordinated within MODLand, EOS and the larger remote sensing
community, especially IGBP. Boston University is working with other MODLand teams
in developing site data, including work with the Snow/Ice Team in Glacier National Park
and a winter 1996 field and MAS data acquisition campaign for Hubbard Brook LTER,
New Hampshire.

One important source of test site data is the Landsat Pathfinder Global Land Cover
Test Sites (GLCTS) program, for which data are now being assembled at the EROS Data
Center. GLCTS was proposed by an informal network of researchers largely connected to



34 MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change

MODIS, EOS and/or the IGBP. Each site is known to have some associated ground in-
formation on local land cover or related data. For each GLCTS site, a database of re-
motely-sensed imagery that includes Landsat MSS, TM, and AVHRR data is being as-
sembled by the GLCTS program. Landsat images include both recent and historical ac-
quisitions (for change detection). AVHRR images include LAC data in a 500-km by 500-
km window centered on each test site; they are being acquired as part of the data acquisi-
tion phase for the AVHRR global 1-km dataset, and acquisitions are expected to continue
into the future along with this program. Databases have been completed at eight sites.
The present list of GLCTS test sites includes 130 locations globally, although there is a
commitment now for only database development at some 30 sites. Although the com-
pleted sites are data-rich, there is no consistency in the level of land cover information
that has been derived at each site. It will therefore be necessary to extract land cover data
for the GLCTS sites to make them usable for MODIS Land Cover training and valida-
tion.

Another source of test sites is the IGBP-DIS Global 1-km Land Cover Database proj-
ect, which will identify a global set of confidence sites to provide local-scale land-cover
information for both methodological development and accuracy assessment of the 1-km
land cover database (IGBP-DIS, 1994). The project anticipates 40 to 100 such “core”
sites, many of which will likely coincide with those of the Landsat Pathfinder. IGBP has
also proposed to validate the IGBP AVHRR global land cover classification using statis-
tical sampling based on over 400 remote sensing observation sites. These data will be
available and may be easily applied to validation of the MODIS product, even though
they are not designed specifically for that purpose.

Other sources of test sites are international field experiments, such as the Boreal Eco-
system-Atmosphere Study (BOREAS) in boreal Canada; the SALT transect (Savanna on
the Long-Term) in West Africa; or the French test sites for the POLDER (Polarization
and Directional Earth Reflectance) instrument.

3.1.3.4 Site Databases

Test site data need to be compiled, analyzed and stored in an efficient information
management system. We are currently developing several databases that support our
global test site network.

• Global Thematic Database.
We are assembling a database of ancillary global data to support analysis of test
site location and as collateral data for classification and validation. These data in-
clude vegetation maps and databases of Matthews, Olson, Kuchler, and Loveland;
climate maps and databases of Köppen and Strahler; and Land-Surface/Land-
Form maps and databases (TBD).

• Test Site Databases.
We are compiling field and ancillary thematic and remotely sensed data for our
Regional sites, Instrumented/Tower Sites, Intensive Study/Continuous Observa-
tion Sites, Field Validation Sites, and Remote Sensing Sites.
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• Validation and Test Sites (VATS) Parameter Database.
To make the site data useful, variables and parameters need to be extracted and
compiled in a site database; this is the operational training and validation data.
This database is the repository for remote sensing and other variables extracted
and tracked for individual plots and sites. It includes field data coupled to specific
points and polygons.

3.1.4 Prelaunch Algorithm Development and Validation

3.1.4.1 Land Cover Parameter

The primary objectives of algorithm development and validation in the prelaunch
phase are to: (1) validate the general and specific neural network architecture to be used
in the classifier; (2) select the best sources of information for classification from spectral,
temporal, spatial and directional domains; and (3) identify and refine the compositing
criteria used in assembling the database. These objectives require test site data that simu-
late the information content of MODIS imagery as closely as possible. For this purpose,
the best source of such data is a registered sequence of TM images acquired during an
annual cycle.

TM is preferred to other high-spatial resolution sensors because TM spectral bands
are similar to those of the MODIS land bands. To simulate MODIS imagery, the MODIS
Science Data Support Team has written a program that executes a spatial convolution
procedure on TM imagery to provide outputs at 250-m, 500-m and 1-km resolutions
(Barker et al., 1992). Assembling a database of such imagery over an annual cycle adds
the multitemporal dimension. Texture information can also be generated from such a se-
quence, providing the spatial dimension. As directional information is lacking, multitem-
poral TM data can provide three of the four MODIS information domains: spectral, tem-
poral, and spatial.

3.1.4.1.1 Walnut Gulch/Cochise County Classification Study

As a part of our prelaunch validation work, a MODIS-like dataset was created and
used to examine feature selection using decision trees and land cover classification using
both decision trees and neural networks for a portion of Cochise County, Arizona, in-
cluding the Walnut Gulch study area (Borak and Strahler, 1996). The dataset consisted of
57 input fields per pixel derived from an intraannual sequence of seven Landsat TM ac-
quisitions merged with ancillary elevation information from a 30 arc-second EDC digital
elevation model. The TM database was subsetted so that a region of approximately
13,000 km2 could be examined in detail.

Land cover reference data for training and testing were derived from a statewide base
map of land covers prepared for the Gap Analysis Project (GAP). These data were con-
verted from vector polygons to a 30-m raster by the University of Arizona and generously
made available to us. Within the study region, 42 class labels were present. These classes
were relabeled into the IGBP scheme; 12 of the 17 IGBP classes were represented. No
accuracy data were available for the database.
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Data used were resampled to a common 960-m grid that approximated the spatial
resolution of the MODIS Land Cover Product. The satellite spectral data were convolved
with a TM-to-MODIS Gaussian blur filter using a fast Fourier transform (Barker et al.,
1994) in order to simulate MODIS imaging characteristics. In addition, a 240-m NIR
channel was created for the derivation of a texture index. The aggregated spectral data
were corrected to surface reflectance employing the MODTRAN atmospheric characteri-
zation algorithm (Berk et al., 1989), which was calibrated by ancillary meteorological
data. After atmospheric correction, NDVI and SAVI were produced at 960-m resolution
and the MODIS texture measure, taken as the standard deviation of all 240-m NIR values
within the 960-m pixel, was calculated. Finally, the elevation dataset was registered to the
resampled satellite data.

The reference dataset was registered to the full-resolution satellite data using a con-
currence of land cover types with obvious features present in the images. To produce pix-
els at 960-m resolution, the coarse resolution land cover was determined by applying a
plurality voting rule to the fine-resolution labels.

In the data analysis phase, a decision tree classifier was first applied to select the in-
puts, or features, from the full measurement space that were the more significant dis-
criminators of land cover type. Three classification algorithms were then applied to the
reduced feature space: the decision tree, a maximum-likelihood classifier (MLC) and the
fuzzy ARTMAP artificial neural network. To examine the effect of sampling of training
data on accuracy, two sampling approaches were employed:training data were sampled
proportionally to class size in the reference map, and training data were sampled with
fixed frequency for all cover types. In each case, 20 percent of observations in the data-
base were used for training, while all observations were used for accuracy assessment.

In the proportional case, the decision tree identified 14 significant features. These in-
cluded each of the six spectral bands, SAVI, and NIR texture on at least one date, as well
as elevation. For the fixed-size case, 10 features were selected that included five spectral
bands, SAVI, image texture, and elevation. Thus, all inputs contained useful information
at some point in the time series. With respect to data compression, the decision tree re-
duced the input feature space by 75 percent and 83 percent for the proportional and fixed-
size sampling approaches, respectively. As a control, the full feature space was retained
for one neural net classification trial.

In the classification phase, five classifications were carried out: maximum likelihood
with and without prior probabilities; decision tree; and fuzzy ARTMAP on both the full
and reduced feature set. Table 3 presents the results expressed as classification accura-
cies. The neural net classifier clearly had a significant performance advantage in com-
parison to the tested alternatives. For the proportional case, fuzzy ARTMAP produced an
overall accuracy that was 4.9 percent above its closest rival, and for the fixed-size ap-
proach, this difference increased to 9.2 percent.

Note also that the neural net classifier performed about the same using both the full
and reduced feature sets. This indicates that feature reduction did not degrade accuracy. It
also demonstrates the ability of the fuzzy ARTMAP classifier to handle data redundancy
without difficulty.
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Table 3. Classifier Comparison, Walnut Gulch/Cochise County MODIS
Simulation Study

Sampling Proportional
to Size Fixed-size Sampling

Classifier
Accuracy,
percent*

Kappa
statistic

Accuracy,
percent*

Kappa
statistic

Maximum likelihood 56.3 0.401 54.4 0.306
Maximum likelihood, with prior

probabilities
71.1 0.518

Decision tree 73.5 0.446 47.2 0.306
Fuzzy ARTMAP 78.4 0.609 63.6 0.450
Fuzzy ARTMAP, all features 77.3 0.583 64.1 0.455

*Includes mixed pixels and errors in GAP database.

For all classifiers, the proportional sampling strategy produced higher accuracies, a
result that demonstrates the importance of information about the relative size of classes
on overall accuracy. However, the fixed-sample strategy produced a somewhat more
even distribution of errors of omission and commission for individual classes.

The table also shows that overall accuracies for this study are about 10 percent lower
than those normally achieved in this type of land cover classification, for example with
the 1-km AVHRR NDVI dataset described in the following section. We attribute this to
inaccuracies in the “ground truth” database. In the preparation of any map of thematic
polygons, generalization is required to produce smooth, coherent, and consistent bounda-
ries. Small patches or clusters of inliers and outliers are removed. However, when classi-
fiers are applied to observations on a raster grid, the results typically, and correctly, in-
clude these patches. After relabeling in the IGBP scheme, the GAP map was quite gener-
alized, showing only large polygons, even at 960-m resolution. For the entire study area,
exceeding 12,000 km2, only about 200 polygons were present, providing a mean size of
about 650 MODIS-sized pixels per polygon. This statistic aptly demonstrates the simpli-
fied nature of the ground truth data.

3.1.4.1.2 Neural Net Classification of Global 1° AVHRR Dataset

Although MODIS-like datasets are the most helpful for developing algorithms in the
prelaunch period, it is also useful to test candidate classifiers on existing global datasets.
Accordingly, we repeated the procedure of Townshend and DeFries (1994) in classifica-
tion of a coarse resolution (1° in latitude and longitude) multitemporal composited
AVHRR NDVI dataset (Los et al., 1994), substituting a fuzzy ARTMAP neural net clas-
sifier (see section 3.1.2.1.2) for their maximum likelihood classifier.

Townshend and DeFries used eleven broad vegetation cover types rather similar to
those of the IGBP (Table 1). The training sites for each of the cover types were identified
based on agreement between three existing datasets of land cover (Matthews, 1993; Wil-
son and Henderson-Sellers, 1985; Olson, et. al., 1983). That is, all 1° cells for which the
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class assignment by each of these three datasets agreed were taken as pixels with known
class labels. These pixels were then used for training and testing. It is interesting to note
that the three data sets agree on cover types for only 26 percent of the total land surface.
The dataset consists of a total of 3398 pixels.

For this work, Townshend and DeFries tested both a calendar sequencing of NDVI
values and a resequencing beginning with the peak value in order to standardize seasonal
effects. That is, in resequencing, the first NDVI value is the maximum (regardless of the
month in which it occurs), the second value is the value that occurs in the month follow-
ing the month of the maximum, and so forth. They also explored several ways of incorpo-
rating latitude into the classification process, for example by stratifying the land surface
into latitudinal strips or subdividing the training areas by latitudes. Using a maximum
likelihood classifier (MLC) on the entire set of training data, they concluded that both
incorporating latitude as a variable in the classification and resequencing the NDVI val-
ues provided more accurate results.

Using the same datasets (generously made available by Townshend and DeFries) we
reclassified the labeled pixels using a fuzzy ARTMAP network. The network was trained
using 80 percent of these pixels and testing was done on the remaining 20 percent. Paral-
leling the work of Townshend and DeFries, we also investigated the effect of latitude on
classification accuracy. In one case, latitude was scaled from 0 at the north pole to 180 at
the south pole, whereas in the other latitude was omitted entirely.

Table 4 presents pixel counts for training and testing data as well as accuracies, ex-
pressed as percents, for the fuzzy ARTMAP classifier exercised on data including and
omitting latitude. The results are averages from five different neural networks built from
different random presentations of the training data. Overall accuracy is about 10 percent
higher when latitude is used directly in the classifier, confirming the conclusions of
Townshend and DeFries. Note also that the neural net classifier outperforms maximum
likelihood by about 8 percent. The table also shows the results of classifications using
decision trees, which are discussed in the following section.

 It is also interesting to observe the variation in global classification results between
classifiers. Table 5 shows pixel counts and percentages for global classifications using
two of the classifiers, fuzzy ARTMAP and the hybrid decision tree (discussed further
below). In general, the global percentages are similar to those of the input training sites,
emphasizing the importance of class size within the training set on the classification out-
come (see section 3.1.4.1.1 for more discussion of this point). This behavior is especially
apparent for broadleaf deciduous forest/woodland, which in neither of the global classifi-
cations exceeds 1 percent of the total pixels. In this case, the very small number of train-
ing pixels constrains the classifiers to limit the number of classified pixels as well. The
results point up the importance of obtaining training data that is representative of global
land cover in all respects (see section 3.1.3).
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Table 4. Classification Results, AVHRR Composited NDVI 1° Dataset
Total Neural Net ARTMAP Classifier Maximum Likelihood and Decision Tree Classifiers

Training
Pixels Pixel Count

Classification Accu-
racy, percent Pixel Count Classification Accuracy, percent

Land Cover Category

Available,
Town-

shend and
DeFries

Training
(80 %)

Testing
(20%)

With
Latitude

Without
Latitude

Training
(70%)

Pruning
(20%)

Testing
(10%)

Maximum
Likeli-
hood

Univariate
Decision

Tree

Multi-
variate

Decision
Tree

Hybrid
Decision

Tree
Broadleaf evergreen forest 628 502 126 97.6 91.3 440 125 63 84.0 95.7 96.1 96.3
Coniferous evergreen for-

est/-woodland
320 256 64 68.8 53.1 224 64 32 69.0 81.0 80.0 78.1

High latitude deciduous
forest/woodland (mostly
larch)

112 90 22 86.4 90.9 78 23 11 100.0 85.4 92.7 99.1

Tundra 735 588 147 95.9 94.6 514 147 74 86.0 94.5 94.7 95.1
Mixed deciduous and ever-

green forest/woodland
57 46 11 63.6 72.7 40 11 6 40.0 34.0 56.0 58.0

Wooded grassland 212 170 42 88.1 45.2 148 43 21 95.0 82.9 86.7 86.7
Grassland 348 278 70 80.0 68.6 243 70 35 35.0 70.6 66.2 70.3
Bare ground 291 233 58 100.0 89.7 204 58 29 100.0 95.2 95.6 97.3
Cultivated 527 422 105 74.3 79.5 369 105 53 81.0 76.6 78.5 80.2
Broadleaf deciduous for-

est/-woodland
15 12 3 0.0 0.0 10 3 2 100.0 0.0 0.0 0.0

Shrubs and bare ground 153 122 31 80.6 77.4 107 31 15 100.0 84.7 86.0 92.7
Pixel total 3398 2719 679 2377 680 341
Overall accuracy 86.6 76.7 78.8 85.6 86.4 87.7
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Table 5. Global Classification Pixel Counts and Percentages
Global Classification

Training/Test
Data

Fuzzy ARTMAP
(with latitude)

Hybrid Decision
Tree

Land Cover Category
Pixel
Count

Per-
cent

Pixel
Count

Per-
cent

Pixel
Count

Per-
cent

Broadleaf evergreen forest 628 18.5 1770 10.8 2130 13.0
Coniferous evergreen for-

est/woodland

320 9.4 1805 11.0 2145 13.1

High latitude deciduous for-
est/woodland (mostly larch)

112 3.3 640 3.9 921 5.6

Tundra 735 21.7 2723 16.6 2415 14.7
Mixed deciduous and evergreen for-

est/woodland

57 1.7 541 3.3 250 1.5

Wooded grassland 212 6.2 1675 10.2 1264 7.7
Grassland 348 10.2 2287 13.9 2527 15.4
Bare ground 291 8.6 1502 9.1 1510 9.2
Cultivated 527 15.5 2857 17.4 2705 16.5
Broadleaf deciduous forest/woodland 15 0.4 26 0.2 19 0.1
Shrubs and bare ground 153 4.5 592 3.6 533 3.2
No class label 1 0.0 0 0.0
Total 3398 100.0 16419 100.0 16419 100.0

3.1.4.1.3 Decision Trees

As noted in section 3.1.2.1.3, decision tree classifiers present an alternative to neural
networks that we are also exploring for use in preparing the land cover product. Friedl
and Brodley (1996) recently tested the performance of decision tree algorithms for land
cover classification. Three different decision tree algorithms were tested on several dif-
ferent training data sets. The decision tree algorithms included univariate decision trees
(UDT; Breiman et al., 1984), multivariate decision trees (MDT; Brodley and Utgoff,
1995) and hybrid decision trees (HDT; Brodley, 1995). Univariate decision trees test a
single feature at each internal node, whereas multivariate decision trees use linear combi-
nation tests to define the splitting criteria at each internal node. Hybrid decision trees em-
ploy multiple classification algorithms within the framework of a single decision tree
structure.

The performance of these algorithms was evaluated using three different datasets with
different spatial, spectral and temporal properties. The first was the 1° AVHRR compo-
sited NDVI dataset of Los et al. (1994) that was used by Townshend and DeFries (1994)
and Gopal, Woodcock and Strahler (1996) as described above. Training labels for these
data were derived by Townshend and DeFries (1994). The second dataset tested was de-
rived from the 1990 Conterminous US AVHRR Dataset compiled at EROS Data Center
(Eidenshink et al., 1992) and consists of a time series of maximum NDVI values during
each month of the growing season in 1990. Class labels were assigned to these data by
reclassifying the labels provided by Loveland et al. (1991) to the IGBP classification (see
section 2.3). The data used here were extracted at 10,000 random locations, and exclude



MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change 41

water bodies. The final dataset was composed of a random sample of roughly 2000 val-
ues of raw Landsat Thematic Mapper (TM) data acquired over a forested area surround-
ing Lake Tahoe, California. These data were extracted from a single image and include
all TM bands except band 6 (thermal). Class labels were assigned using a combination of
automated classification procedures that incorporated the use of ancillary data, manual
labeling using field data, and aerial photography (Woodcock et al., 1994a, b).

To evaluate the classification performance of each of the decision tree algorithms
identified above, a set of ten cross-validation runs were performed using each classifica-
tion algorithm to classify each of the datasets. To do this, each dataset was split into three
parts: 70 percent training, 20 percent pruning, and 10 percent testing. In this way, the
trees were estimated, pruned, and evaluated using independent data for each step. This
procedure was repeated to generate ten versions of the data with different random combi-
nations of training, pruning, and testing data. To provide a baseline of the performance of
the decision tree algorithms a parallel cross-validation procedure was performed using
both a maximum likelihood and linear discriminant function classifier. The classification
accuracies were then reported as averages across the ten cross-validation runs and are
presented below in Table 6. These results show that the decision tree algorithms consis-
tently and significantly outperformed more conventional classification algorithms.

Table 6.  Classification Results, Decision Tree Classifiers
Classification Method NDVI 1° NDVI 1-km TM
Univariate decision tree 85.6 71.0 75.2
Multivariate decision tree 86.4 71.7 75.9
Hybrid decision tree 87.7 80.1 76.0
Linear discriminant functions 78.7 51.7 70.6
Maximum likelihood classification 78.8 62.2 69.0

Table 4, presented earlier, provides per-class accuracies for the NDVI 1° dataset. Al-
though for some classes maximum likelihood gave more accurate results, superior per-
formance on the larger classes gave decision trees an overall accuracy advantage of 7-9
percent.

It is notable that classification accuracies are in general lower for the NDVI 1-km and
TM datasets than for the NDVI 1° dataset. At 1-km resolution, the data are significantly
noisier than at 1°. The NDVI 1-km dataset suffers from multidate registration inaccura-
cies and is also not fully corrected for atmospheric effects. In contrast, the 1° dataset is
filtered and smoothed (Los et al., 1994) as well as averaged over a much larger grid cell
size. Note that both multidate registration and atmospheric correction will be much better
for MODIS than for the AVHRR NDVI 1-km dataset. Noise and mixed pixels are also
characteristic of the TM dataset (Woodcock et al., 1994a, b).

In addition to this assessment of decision tree performance, Brodley and Friedl (1996)
developed a consensus filter technique based on machine learning theory to filter training
data for mislabeled observations. Given the importance of training data quality to the per-
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formance of both neural net and decision tree classification algorithms, this method is of
potentially high utility for the implementation of operational land cover and land-cover
change algorithms. Specifically, the technique provides an automated and objective
method for tagging mislabeled observations in training data that are input to supervised
classification algorithms.

The consensus filter technique uses an n-fold cross validation procedure using a set of
m different classification algorithms. To this end, the algorithm first splits the training
dataset into n-subsets. For each of the n-subsets, each of the m different classification al-
gorithms are then estimated using the n-1 other subsets. The m classification algorithms
are then applied to the unseen data. Each classifier identifies a sample as potentially mis-
labeled if it does not classify the sample correctly. An observation is tagged as being in-
correctly labeled by the filtering procedure if all of the m classifiers identify it as being
mislabeled (i.e., a “consensus”). At the end of the n-fold cross-validation, each sample in
the training data has been tagged as being either correctly or incorrectly labeled.

The basic notion behind this procedure is that if several different classification algo-
rithms all classify a training sample differently from its assigned label, there is a high
probability that the observation is mislabeled. The theoretical basis for this technique is
founded in the observation that different classification algorithms have different biases
(Brodley, 1995). In other words, different classification algorithms may classify individ-
ual observations differently because the observations appear to be outliers relative the
specific algorithm being used. By applying multiple classification algorithms with differ-
ent biases and requiring a consensus among the different algorithms, the probability is
increased that an observation that is tagged as being mislabeled actually is mislabeled. In
this context, because the procedure requires a consensus among the m classifiers, it is de-
signed to be conservative.

To test this procedure, we simulated labeling errors in training data by randomly in-
troducing error between classes that are likely to be confused in real data (e.g., grassland
versus wooded grassland). To do this we used the training dataset generated by DeFries
and Townshend (1994) for 1° the AVHRR composited NDVI dataset (Los et al., 1994).
Results from this analysis show that the procedure is capable of detecting and removing

Table 7. Effect of Noise and Consensus Filtering on Classification Accuracy (percent).
Classifier

K-Nearest Neighbor
Linear Discriminant

Functions Decision Tree
Induced

noise level Unfiltered
Consensus-

filtered Unfiltered
Consensus-

filtered Unfiltered
Consensus-

filtered
  0 87.3 N/A 78.6 N/A 85.6 N/A
  5 84.4 87.8 76.7 78.9 84.4 86.1
10 81.8 86.4 77.5 79.2 80.1 85.1
20 75.8 83.1 70.2 78.1 75.2 81.8
30 68.6 75.2 63.4 74.0 67.4 74.2
40 58.4 59.9 49.0 54.2 56.9 59.6
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fairly substantial levels of noise in training data (Table 7). Note also that the procedure is
amenable to use in training the classifier for the MODIS land cover product, since it op-
erates on training data rather than the entire global dataset.

3.1.4.2 Land-Cover Change

Prelaunch algorithm development of the Land-Cover Change Parameter has three
primary objectives: (1) to validate the multitemporal change vector technique at broad
spatial scales (continental) and over a decade or more of observations; (2) to refine the
logic for land-cover change characterization; and (3) to define the linkage between the
land-cover change technique and ancillary data (thematic information and high resolution
information) for a more detailed monitoring of “hot spots”—areas of rapid change. This
work will extend the research of Lambin and Strahler (1994a, 1994b) on the application
of change vector analysis to AVHRR LAC data from west Africa.

The objectives above require a long time series of high temporal-frequency satellite
observations. Only AVHRR GAC data meet these requirements. There are two important
sources of GAC data for this purpose. First is the AVHRR Pathfinder dataset, comprised
of 12 years of daily cloud-screened GAC data that are calibrated, corrected for ozone ab-
sorption and Rayleigh scattering, and registered to a map projection. Another important
time sequence of AVHRR data is the GAC dataset of the African continent produced by
the Monitoring Tropical Vegetation Unit of the European Union's Joint Research Center
in Ispra, Italy. This dataset has already been used extensively in developing the change-
vector technique by Associate Team Member Eric Lambin (Lambin, 1995; Lambin and
Ehrlich, 1995, 1996a, 1996b).

It is important to note that because the spectral bands of the AVHRR are limited,
these data do not provide the full information content of the MODIS database. However,
AVHRR data do provide the temporal signal that is expected to be most important in the
detection and characterization of land-cover change. In the prelaunch period, algorithm
development activities are focusing on understanding and exploiting the information
content of the AVHRR temporal signal.

Specific near-term activities in algorithm development of the Land-Cover Change Pa-
rameter include: (1) continuing analysis of change vectors over ten years of African
NDVI and surface temperature data; (2) validating the change magnitude and change
processes that are detected using a variety of sources, such as FAO reports, FEWS Bulle-
tins, NCAR Climate Impact Maps, published reports on land-cover change, and high
resolution data analysis; and (3) defining typical temporal patterns of land-cover change
to establish the basis of a future classification system for land-cover change processes.

3.1.5 Sources of Error and Uncertainty

Sources of error include pre-processing operations associated with development of
the land cover product as well as problems with pre-processing of data provided to the
land cover process. Two phases of processing are necessary for generation of the MODIS
Land Cover Product: data compositing and data analysis. In the compositing phase, the
32-day composited databases are assembled from MODIS Level 3 inputs. In the analysis
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phase, a year of 32-day composites are processed by the land cover and land-cover
change algorithms to produce the quarterly output products.

3.1.5.1 Inputs

Both the Land Cover and Land Cover Type Change Parameters rely on a 1-km grid-
ded database composited from MODIS Level 3 products. Inputs include (1) BRDF-
corrected surface reflectances at 1000-m spatial resolution in the MODIS Land Bands (1-
7) (MODIS Product MOD43); (2) spatial texture derived from Band 2 (near-infrared) at
250-m resolution; (3) vegetation index (MOD34); (4) weekly snow/ice cover (MOD33);
(5) weekly land surface temperature at 1 km (MOD11); (6) directional reflectance infor-
mation derived from the MODIS BRDF/Albedo Product (MOD43); and (7) ancillary ter-
rain elevation information. These data are composited over a 32-day time period to pro-
duce a globally-consistent, multitemporal database on a 1-km grid as input to classifica-
tion and change characterization algorithms (Strahler et al. 1995).

The ability to meet validation objectives may be influenced by changes in the input
data. The input data can affect the land cover product because of the nature of the data or
by affecting algorithm or process. This influence can be minimized if the algorithms are
robust and promote multivariable, convergence-of-evidence approaches rather than rely-
ing on a single input parameter. At any rate, the nature and validity of input data must be
monitored for its impact on land cover product validity.

3.1.5.2 Clouds

Persistent cloud cover will impede acquisition of high quality time trajectories of re-
flective or thermal data for use in characterizing land cover types. Even for a compositing
period of 32 days, lack of cloud-free data will be a significant problem at some times of
year in some regions, especially the humid tropics.

Cloud screening occurs in the production of several products that are input to the
composited database. Therefore, the problem for the Land Cover Product should be one
of missing rather than cloud-contaminated data. For isolated pixels and small regions of
missing data, the solution is to provide temporally or spatially-interpolated values. When
large areas of a monthly composite for a continent or large region show missing values,
the appropriate strategy is to eliminate the composite from processing. The impact of loss
of data due to clouds (and other causes) can be minimized by using algorithms that han-
dle missing data well, which was one of the criteria for selecting an artificial neural net-
work approach.

3.1.5.3 Registration

Misregistration may be another significant source of error. Since each MODIS meas-
urement is geolocated, this problem amounts to uncertainty in true geolocation. Geoloca-
tion error is discussed in section 2.4.

A further consideration for geolocation and registration is continuity with ground lo-
cation data. For field data to be effectively used for training and validation, transforma-
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tions must be defined for coreferencing these data. This may require standardization of
projection parameters such as datums and spheroids.

3.1.5.4 Gridding and Binning

Since Level-2 values are available, and in fact are used to characterize variance
within grid cells, gridding will not introduce as much error or uncertainty as would occur
if only Level-3 values were available (Kahn et al., 1991). Multidate registration of Level-
2 products to the Level-3 grid will be influenced by errors in geolocation. Excluding
blunders, these are likely to be larger at larger scan angles. BRDF-fitted reflectance will
be an improvement over selection by maximum value or by simply selecting against large
view zenith angles. Output at 1-km resolution instead of the nominal 250-and 500-m
resolutions for surface reflectance will reduce errors in spatial overlay. Moreover, if mul-
tidate registration proves problematic, it may be possible to cross-correlate images during
the monthly compositing step and discard those that are poorly registered due to geoloca-
tion errors. This would require a significantly greater processing burden.

3.1.5.5 Topographic Data Error

Elevation is a key factor in geolocation of pixels. Elevation also must be accommo-
dated in atmospheric correction, since it influences path length as a function of view an-
gle. We may expect that both of these sources of error will be substantially corrected
prior to compositing in the production of input products.

Pixel-scale topographic variations will, however, generate localized radiometric ef-
fects that influence surface reflectances. These effects include slope and aspect-related
illumination differences, reflection from adjacent terrain, and subpixel shadowing that
will generate BRDF effects. Proper correction for these effects requires accurate, high-
resolution digital terrain data, which necessitates the use of the ancillary elevation data.
These data may not be available at launch and are more likely a postlaunch consideration.
The precise requirements for terrain data must be developed and reconciled within
MODLand.

3.1.5.6 Data Dependencies

Since the Land Cover Product uses other MODIS products such as vegetation index,
snow/ice cover and BRDF/Albedo products as well as a Land/Water Mask as inputs, its
accuracy will depend partly on the accuracies of those products. However, it is not likely
to be very sensitive to small errors in these input parameters. Based on the long history of
successful land cover classification using remotely sensed data, we expect the spectral,
spatial, temporal and directional signals to be quite robust in their information content for
land cover, given that the instrument at least approaches its signal-to-noise ratio specifi-
cations. Because the classifier operates empirically, biases are not likely to be a problem
as they might be for algorithms that produce quantitative geophysical parameters. Fur-
ther, the compositing process that assembles the products will read quality flags and dis-
card low-quality observations wherever possible.



46 MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change

For all data dependencies, it is necessary to track changes in inputs and their effect on
algorithms, processing, flow, and product validity. Land cover and land-cover change are
linked by the relationship of multitemporal characterization of land cover and multitem-
poral discrimination and description of land-cover change. This is manifest in the use of
change detection to isolate multitemporal signal noise and change for validation of proc-
ess and algorithm, as well as characterization of land cover types and optimization of
field sampling.

3.1.5.7 Temporality

Error may be introduced when validation data are not temporally coincident with
MODIS observation. This can especially be a problem with detecting and describing
change. Although data compositing is prescribed, it will be necessary to define meaning-
ful temporal generalizations of land cover based on successive observations. A further
issue of temporality is assuring the temporal continuity of algorithms and processes.

3.1.5.8 Algorithm

Within the Land Cover Parameter, errors are generated when the classification algo-
rithm selects the wrong class. With respect to a particular class, errors of omission occur
when pixels of that class are assigned wrong labels; errors of commission occur when
other pixels are wrongly assigned the label of the class considered. These errors occur
when the signal of a pixel is ambiguous, perhaps as a result of spectral mixing, or when
the signal is produced by a cover type that is not accounted for in the training process.
These errors are a normal part of the classification process. They can be minimized, but
not avoided entirely. Although they cannot be identified on a pixel-by-pixel basis due to
processing constraints, they can be characterized in a statistical sense.

3.1.5.9 Reference Data

Reference data include both test site data and ancillary land cover and other environ-
mental data. The quality and availability of adequate training/validation data derived
from field sites and existing maps and tabular data is the most limiting factor to land
cover and land-cover change validation (Muchoney et al. 1996). The quality of reference
map data is a function of their inherent locational and thematic accuracy, while their util-
ity may be restricted by incompatible classification systems or time of creation and vali-
dation.

Accuracy assessment of land cover products depends on the type and accuracy of ref-
erence (“truth”) data comprising field observation, remote sensing and collateral data
sources. For individual test sites, the utility and quality and of the ground truth will be
variable. Data utility is influenced by the classification system that is applied or parame-
ters that are derived for a site. Site data utility is also a function of the source data since
this impacts discrimination of features; what is observable using TM does not necessarily
translate (at least directly) into comparable MODIS-discernible features. Source data also
influence the minimum mapping unit and dimension.
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The factor which primarily affects the quality of reference data is the underlying ac-
curacy of the ground truth classification which may not be known. The time difference
for the source data used in developing a reference dataset, the reference (presumably
field-based) date and the MODIS acquisition dates impact both utility and accuracy of
test site data.

Because factors relevant to validation vary considerably from test site to test site,
validation will require assessment of the utility and accuracy of data available at each test
site and most probably reworking site data to extract information specifically useful to
land cover and land cover change. This argues strongly for the development of a high-
resolution reference dataset that might be derived from other remote sensing sources,
standardization of classification subunits or parameters, standardization of procedures for
deriving classification subunits and parameters and development of a global sampling
scheme and associated database.

High spatial resolution imagery will be available from a number of sources including
ASTER, which will be on the EOS-AM platform with MODIS, the Landsat-7 ETM in-
strument, due for launch at about the time of the EOS-AM platform and destined for a
near-simultaneous orbit and Lewis. With high spatial resolution data available, spatial
heterogeneity of the test sites and the classes they contain can be further characterized
and monitored. As a continuing data source, these instruments will also allow updating of
land cover ground truth at test sites through the EOS era. Use of collateral remote sensing
datasets such as TM and Lewis provide for a number of additional benefits of redundancy
and complementarity that can be derived using data integration and data fusion tech-
niques.

3.2 Practical Considerations

3.2.1 Numerical Computation Considerations

We do not anticipate problems with numerical stability and/or round-off errors.

3.2.2 Programming/Procedural Considerations

Two phases of processing are necessary for the MODIS Land Cover Product: data
compositing and data analysis. In the compositing phase, the 32-day composited data-
bases are assembled from MODIS Level 3 inputs. In the analysis phase, twelve 32-day
composites are processed by the land cover algorithm, and 24 composites are processed
by the land-cover change algorithm to produce the quarterly output products.

Allowing for quality flags, average daily volume will be approximately 0.51 GB. The
processing power required is about 28 MFLOPS in order to assemble the 32-day database
in one week. Obviously, this figure will increase if a more timely execution is required by
the DAAC. At any rate, this power is about that of a mid-range engineering workstation.

Based on Version 1 software runs, generation of a single composite database for the
terrestrial surface of the globe will require approximately 41.3 MFLOPS of CPU in the
production environment. The corresponding output database will be approximately 5.34
GB in size. Similarly, in order to generate the quarterly products, 184.7 MFLOPS of CPU
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will be required to produce the 5.62 GB output databases. For both processes, these CPU
estimates assume a 32-day period for completion.

3.2.3 Postlaunch Validation

3.2.3.1 Land Cover Parameter

Proper validation of a global dataset is not a simple task. Whereas validation of a bio-
physical parameter might entail developing a quantitative estimate or sense for the physi-
cal meaning of the parameter under consideration (Kahn et al., 1991), land cover valida-
tion provides an indication or estimate of confidence that a pixel or segment has been
correctly labeled as to a thematic class. Therefore, validity is dependent on how we de-
fine land cover classes. If the objective is to place a bounded estimate on the global per-
pixel accuracy of the classification, then a formal sample design, based on a random, ran-
dom-stratified, or systematic spatial sample, is required (Cochran, 1977). Such a sample
requires obtaining reference data at many locations on the globe. The cost of acquiring
such knowledge is therefore prohibitive, given the postlaunch resources for validation
that we anticipate being available to the MODIS Land Team. Instead, we must turn to the
test sites for which we have high-resolution land cover information available. Because
the test sites are a biased sample, accuracy statistics derived at test sites cannot be re-
garded as proper statements of global accuracy. However, if the test sites are reasonably
representative of their region as is planned, test site statistics can at least point to weak-
nesses and strengths in the dataset and allow users to anticipate how errors might impact
their own research.

There are several approaches to the selection of pixels for comparison. First, accura-
cies may be reported by comparing the results obtained by the classifier in back-
classifying training sites. Typically, this method is used to benchmark relative accuracy
of classifiers rather than to establish a practical standard of accuracy. Given the nature of
the algorithms, they back-classify (reclassify) training data to accuracies approaching 100
percent. Therefore, it is not useful to use this jackknife approach to assess thematic accu-
racy. Second, a set of test samples that is separate from training samples may be classi-
fied. Note that for convenience in processing, training pixels are sometimes included in
this set when they comprise only a small proportion of the total test pixels. If these sam-
ples are selected according to a proper sample design, accuracies obtained by this method
can be used to establish overall and per-class classification accuracy for the domain sam-
pled (Green et al., 1993). They may also be used to place bounds on areal estimates of
coverage by class within the domain (Cochran, 1977).

Accuracy assessment has progressed through four development epochs over the last
25 years. The present stage may be described as the age of the error (confusion) matrix
(Congalton, 1994). Classification accuracy is described using tables that document errors
of commission and omission by cross-tabulating per-pixel labels output by the classifier
with labels obtained from ground truth mapping or by classification of higher-resolution
imagery (Story and Congalton, 1986). The kappa coefficient (Cohen, 1960) has become a
standard statistic to evaluate overall classification accuracy, providing a more realistic
estimation than a simple percentage agreement value. The kappa coefficient considers all
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cells in the confusion matrix, providing a correction for the proportion of chance agree-
ment between the reference and test data sets (Rosenfield and Fitzpatrick-Lins, 1986). A
Z-statistic can also be used as a pair-wise test of significance between two techniques
based on the error matrices at specified probability levels (Congalton et al., 1983). How-
ever, it has been found that kappa overestimates the proportion of chance agreement and
consequently underestimates overall accuracy (Foody, 1992). Ma and Redmond (1995)
present an alternative statistic for assessment of overall classification accuracy, the tau
coefficient. This statistic is based on a priori probabilities of class membership rather
than the a posteriori probabilities that are the basis for kappa. Tau is reported to better
adjust percentage agreement to compensate for chance agreement, and to be easier to cal-
culate and interpret. As with kappa, pair-wise tests of significance may be performed.

The confusion-table approach to accuracy assessment operates on the paradigm that
each sample can be properly labeled into a single class, both by the classifier and by the
process that establishes the ground reference (truth) data. It should be recognized that
classification accuracy assessment may contain either conservative or optimistic bias.
Simple interpretation of confusion matrices and related statistics without consideration of
these error sources in the reference data may generate misleading conclusions (Verbyla
and Hammond, 1995; Hammond and Verbyla, 1996). Sources of conservative bias in ac-
curacy assessment (i.e. factors that reduce observed accuracies) include registration errors
between reference and test data sets, use of a minimum mapping unit that is larger than
the size of pixels in the classified image (Verbyla and Hammond, 1995), and the assump-
tion that the reference data are perfectly correct (Congalton and Biging, 1992; Congalton
and Green, 1993). Sources of optimistic bias (i.e. factors that increase observed accura-
cies) include sampling from training sites, non-independence of reference and training
data and sampling from homogenous blocks of pixels (Hammond and Verbyla, 1996).

Accuracy statements about the product clearly depend on the accuracy of the ground
truth. For individual test sites, the quality of the ground truth will be variable. Factors af-
fecting the quality of the ground truth include (1) the underlying accuracy of the ground
truth classification; (2) the units of land cover classification at the test site and their cor-
respondence with those of the Land Cover Parameter; and (3) the difference in time be-
tween the acquisition of ground truth data and the remotely sensed data that are classi-
fied. Because these factors will vary from test site to test site, validation will require an
individualized assessment of the characteristics of the product within ecoregions.

For each test site we will provide (1) class accuracy cross-tabulations resulting from a
proper sample design; (2) a set of probabilistic statements of accuracy for the classifica-
tion within the test site (3) a set of within-class error variances derived from the cross-
tabulations that can be used to set standard errors on areal aggregations; and (4) a discus-
sion and interpretation of accuracy issues and areal aggregation statistics that is geared to
applications of the land cover parameter.

This validation strategy is similar to that adopted by the IGBP-DIS Land Cover Vali-
dation Working Group for the IGBP-DIS Global Land Cover Database (IGBP-DIS, 1995;
see section 2.3.2). They plan analyses of classification accuracy and other characteriza-
tion activities at a network of confidence sites (see section 3.1.3) similar to the test sites
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we plan to use in validation of the Land Cover and Land-Cover Change Parameters. As a
pilot for technique development, we plan to participate in this effort.

The IGBP-DIS plan also includes a core sample of global land covers, selected by a
formal sample design. At these sample sites, high resolution imagery (TM or SPOT) will
be photointerpreted to validate the label of each pixel selected for sampling. The demands
of this approach for high-resolution imagery as well as trained photointerpreters will re-
quire a separate funding initiative that the IGBP-DIS hopes to secure in the near future.
Since these activities are planned for the prelaunch and early postlaunch periods, the
IGBP-DIS validation activity will serve as a pathfinder for validation of the MODIS
Land Cover Parameter.

Another important factor in test site analysis for product validation is that high spatial
resolution imagery will be potentially obtainable from two sources: ASTER, which will
be on the EOS-AM platform with MODIS, and the Landsat-7 ETM instrument, due for
launch at about the time of the EOS-AM platform and destined for a near-simultaneous
orbit. With high spatial resolution data available, spatial heterogeneity of the test sites
and the classes they contain can be readily characterized and monitored. Further, as a
continuing data source, these instruments will allow updating of land cover ground truth
at test sites through the EOS era.

For IDS investigators using the Land Cover Product, quantitative accuracy assess-
ment is only the first step in the analysis of how errors in the classification may affect
their own applications. Through direct contacts with IDS investigators, we plan to ex-
plore and jointly develop validation methods for specific applications. In this way, we
can ensure that the Land Cover Product meets the broadest range of EOS needs.

3.2.3.2 Land-Cover Change Parameter

Validating land-cover change maps is a complex task since it requires the observation
of land-cover characteristics before and after an area is affected by a process of change.
Our global test site development initiative (see Section 3.1.3) is producing an a priori list
of test sites for land-cover change validation based on a sampling, deforestation “fronts,”
ecotones and ecological gradients, record of current change processes and “hot spots”
where human pressure is high and where it is likely that land-cover conversion will take
place. In most areas, a time interval of several years is necessary to detect significant
land-cover changes and to be able to characterize accurately change processes and im-
pacts. The case of the African Sahel is exemplary: several authors have shown that the
interannual climatic variability in this region is such that only time series longer than a
decade would allow for detection of any secular trend in land-cover change (Tucker et
al., 1991; Hellden, 1991). In addition to developing a sampling scheme for validating
land-cover change, we are increasing our efforts in site-level analysis of change processes
using AVHRR, Landsat and MODIS-simulated data.

3.2.4 Quality Control and Diagnostics

Quality control follows the MODLand Quality Assurance (QA) Plan (Roy, 1996).
The plan outlines run-time and post run-time QA procedures for MODLand standard
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products. The QA data fields consist of those mandated by ECS, those common to all
MODLand products, and product-specific metadata. Run-time QA information is gener-
ated in the production environment, and is either spatially explicit (per-pixel) or global
(per-tile) in scope.

Mandatory MODLAND QA is generated on a per-pixel basis. The 8-bit flag consists
of 3 cloud-state bits, 1 bit describing product usefulness and up to 4 additional bits for
product summary as specified by the science team member responsible for each product.
For the MODIS Land Cover Product, these additional bits are a summary of the full set of
QA statistics generated for the product.

Run time quality assurance data specific to the Land Cover Parameter primarily con-
veys confidence in the label of each grid cell as an overall quality flag, as generated by
the neural network classifier. Other flags indicate secondary issues regarding the quality
of the input database. Run time QA issues related to the Land-Cover Change Parameter
are still in early research stages owing to the post-launch status of the data product.

Post run time QA is generated at the SCF and at the Land Data Operational Product
Evaluation (LDOPE) facility, a centralized QA installation. The main role of the LDOPE
is to carry out routine QA evaluation, while the SCF staff handles situations that require
greater scientific expertise. When data fail any quality test at the DAAC or LDOPE (as
defined by either ECS or the SCF), the SCF will be notified by the DAAC or LDOPE. At
that point, SCF staff may elect to examine the data at the SCF, or in cooperation with
LDOPE personnel. Results of post run time QA are then sent to the DAAC, where they
are included as part of the mandatory ECS metadata.

3.2.5 Exception Handling

Exception handling, which covers data generated during infrequent events such as
platform maneuvers, eclipses, and the like, will primarily be the responsibility of the in-
put products. Thus, these events will produce missing data fields.

3.2.6 Data Dependencies

Since the Land Cover Product uses Level-2 and Level-3 products as inputs, its accu-
racy will depend partly on the accuracies of those products. However, it is not likely to be
very sensitive to small errors in these input parameters. Based on the long history of suc-
cessful land cover classification with remotely sensed data, we expect the spectral, spa-
tial, temporal and directional signals to be quite robust in their information content for
land cover, given that the instrument at least approaches its signal-to-noise ratio specifi-
cations. And, because the classifier operates empirically, biases are not likely to be a
problem, as they might be for algorithms producing quantitative geophysical parameters.
Further, the compositing process that assembles the products will read quality flags and
discard low-quality observations wherever possible.

3.2.7 Output Products

Output from the Land cover Product will include the two parameters, Land cover and
Land-Cover Change, encoded as categorical variables that are stored as byte data. Ac-
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companying each byte will be approximately 15 bytes of attribute information which
consist of entries such as quality flags and data-field characteristics. Assuming, then, that
each parameter requires 16 bytes of data, the global data volume per parameter is about
8.8 GB, based on a figure of about 1.5 x 108 sq km of earth land surface.

Because both products require a temporal sequence of data, neither will be available
immediately after launch. However, a provisional product (see section 2.3.2) will be
available at launch for the Land Cover Parameter. We anticipate releasing the first Land
Cover Parameter at 18 months after launch, revising the product quarterly thereafter. The
first Land-Cover Change Parameter will be released 27 months after launch, based on
two years of monthly composites.

The Land Cover GCM Product is especially tailored for global climate modeling at
coarse resolutions. It will be provided on a quarterly basis and will contain the propor-
tions and areal estimates associated with each land cover class within a 1/4° grid cell. The
exact format of this product is still under development.

4. Constraints, Limitations, Assumptions

Constraints, limitations and assumptions are discussed in appropriate sections ad se-
riatim in the preceding text of this document. For example, both the Land Cover and
Land-Cover Parameters require properly registered and resampled data that are cloud-
screened and atmospherically corrected (sections 3.1.1.1.1, 3.1.5).

5. Additional Postlaunch Products

5.1 Relationship of Land Cover Products Proposed by the University of
Maryland with Earlier Proposals

Two additional products have been proposed by the University of Maryland which
are complementary to those proposed in the original ATBD namely:

 i) A land cover change indicator product at a resolution of 250m. This product is de-
signed to provide early warning that land cover change is occurring. The limited spectral
characteristics of the 250m bands will limit identification of the type of change that is oc-
curring but the high spatial resolution should substantially improve the timeliness by
which the existence of change is flagged compared with data at 1 km or even 500m.

ii) A representation of global land cover by continuous fields rather than by classes.
This product is designed to overcome the arbitrariness of abrupt distinctions between
classes, by representing land cover in each pixel by a proportion of basic cover compo-
nents such as percentage tree cover or percentage herbaceous cover.

5.2 A Land-Cover Change Alarm Product at a Resolution of 250m

5.2.1 Overview and Background

A series of simulation experiments using data from the Landsat Multispectral Scanner
System indicate the effect of spatial resolution on the detection of change of a key bio-
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physical variable namely the normalized difference vegetation index: this has been
widely used in the classification of land cover (Townshend et al. 1988), (Townshend et
al. 1990), (Townshend et al. 1995). The results of these analyses indicate that a very high
proportion of changes, which primarily arise because of land cover conversions, occur at
the finest spatial resolutions. It was therefore proposed that two 250m resolution bands
should be included on MODIS (Townshend et al. 1988). The benefits of a 250m resolu-
tion over a 500m resolution as result of this work are indicated in figure 1. These results
indicate that the use of data with a 250m resolution has the potential to be substantially
more sensitive to land cover change than the 500m or 1 km bands. We intend to generate
a global change detection product indicating the distribution of land cover change. It will
be important to attempt to distinguish between actual land cover changes from other
types of changes. The latter will include changes due to phenology, snow cover, and
cloud. We will use cloud and snow products derived by other team members to avoid
identification of spurious changes due to the latter and will use change detection methods
designed to “filter-out” phenological changes.

It is proposed that the change detection product is used to contribute to an alarm sys-
tem to indicate the areas of highest priority where fine resolution data should be col-
lected. It is anticipated that Landsat 7 data will provide much better coverage than previ-
ously, since the space and ground segment will be capable of acquiring many more im-
ages per day. Nevertheless the instrument will inevitably remain a sampler in time and
space compared with MODIS and decisions will have to be made about which areas to
image and which not to in a given cycle. Knowledge of where land cover conversions are
taking place will provide useful intelligence in developing the acquisition strategies since
these areas must be of high priority for monitoring. We proposed to develop close liaison
with the Landsat Science Team to assure the successful implementation of this approach.

5.2.2 Algorithm Description

The overall processing sequence is shown in figure 2. We will primarily exploit the
multispectral and multitemporal information available in the two spectral bands with a
resolution of 250m. Although there are only two bands available at this resolution they
are found in two key spectral regions. The behavior of reflectances of these bands is
rather well known and can be exploited to identify land cover change: for example ratios
of the red and the near infrared are especially sensitive to green leaf properties and clear-
ances in land cover are also often associated with increases in albedo, whereas inundation
(unless below a dense vegetation canopy) typically greatly reduces reflectance especially
in the near infrared.

In deriving the 250m products we will use gridded (level 2G) products of spectral re-
flectance for these two, where atmospheric corrections for molecular scattering, ozone,
water vapor and tropospheric and atmospheric aerosols have been carried out. Generation
of these products is already the responsibility of existing team members.

Data from individual dates will have to be formed into temporal composites so that
the effects of clouds are minimized. Currently funded research of the proposed team
member (Pathfinder AVHRR version-2) is investigating methods of compositing in addi-
tion to the conventional maximum likelihood procedure. The latter produces fields of



54 MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change

vegetation indices, satisfactory for many purposes, but produces highly variable fields of
individual bands. We are examining combining layers from individual dates, with mini-
mum view angles, having flagged the presence of clouds using combined information
from the reflective and thermal bands. We will investigate the use of MODIS cloud prod-
ucts for cloud screening.

It is anticipated on the basis of experience with AVHRR data that temporal compos-
ites of at least a month will be required to generate data sets in which cloud effects do not
prevent effective use.

Two related approaches are proposed in using the spectral bands for change detection,
a two-date procedure where data from only two composites are used and a multidate pro-
cedure where deviations from “normal” seasonal variation are used to identify change.

5.2.2.1 Two-date Procedure

To use the limited information available in the two spectral bands we need to use
properties in which changes extrinsic to those of land cover change are minimized. The
use of atmospherically corrected, calibrated spectral data will do much to assist this.

Our intention is to examine a number of procedures to detect changes between dates.
As an example of one possible approach we note that two of the main changes in spectral
properties associated with land cover change conversions are albedo and greenness.
Changes in the normalized difference vegetation index and overall reflectance from the
red and near infrared should provide a useful operational approach in the detection of
land cover change.

Even allowing for the correction of atmospheric and calibration effects, many
changes which occur within scenes are unrelated to actual land cover changes and hence
it is necessary to identify a thresholds of spectral response beyond which “true” changes
actually occur. One possibility is to use the minimum size of the thresholds VIth and Rth
needed to detect the occurrence of cover change. As figure 3 indicates six basic types of
change can be conceptually identified, namely where VIth or Rth will be exceeded during
either an increase or decrease from time 1 to time 2 and where both thresholds are ex-
ceeded. It may be necessary to vary the size of the threshold according to the absolute
size of the value of the vegetation index since the latter has been shown to vary non-
linearly with some vegetation properties (Curran 1983).

Many of the changes which may be observed may simply arise due to phenological
changes. Hence we will investigate the use of changes in values of the vegetation index
and brightness in excess of the mean changes within a window of dimensions W sur-
rounding each pixel. Thus we will apply a rule of the form:

Flag ⋅ change ⋅ IF P − p
i=1

Nw
∑

 

 
 

 

 
 > Th

Experiments will be carried to determine the size of W. Given that most significant
changes in land cover will have small dimensions, it is not anticipated that a window size
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of more than 20-30 pixels will be required and it may be possible to use an even smaller
window size thus reducing the size of the computations.

The result of this procedure will therefore be a data plane of substantial increases and
decreases in greenness and brightness. These will be further characterized by the initial
state of each pixel (for example whether an increase in greenness occurred for a bright or
dark target). Given the limited spectral information available from the two spectral bands
it will probably not be possible globally to assign a unique land cover conversion label to
each type of trajectory within the VI-R space. However it is anticipated that through use
of models of ecological succession and anthropogenic disturbance (Running, et al. 1994)
and through empirical analysis of both Landsat and AVHRR data it will be possible to
build up regional typologies of characteristic land cover changes associated with these
trajectories. Figure 4 shows an example of the changes in albedo and greenness corre-
sponding to typical land cover changes in tropical rain forests.

To develop the regional models and typologies the proposed team member and cur-
rent collaborators in other funded projects will use their substantial remote sensing and
field experience from many regions of the world. Collaborators are involved in a number
of projects including

i) tropical deforestation and regrowth in the Pan-Amazon and Central Africa,

ii) savanna dynamics in east and Sahelian Africa,

iii) boreal forest dynamics in Canada,

iv) desert boundary changes in central Asia and northern Africa,

v) temperate forest and agricultural change in the United States,

vi) coastal wetland change in the eastern United States.

This knowledge will be supplemented, taking advantage of other validation activities.

5.2.2.2 Multi-Date Procedure

The procedures used in the multidate approach will follow fundamentally the same
approach as that used in the dual-date approach, but the threshold of changes will be also
carried out relative to the annual phenological cycle of greenness displayed by vegetation
indices when plotted against time (e.g., Justice et al. 1985). Once more than a year's data
have been obtained we will then use deviations from the seasonal vegetation index tem-
poral profiles to assess whether the threshold has been exceeded indicating a land cover
change. Consideration of the observed pixel changes relative to changes in surrounding
pixel values should also be included in the decision rule, as proposed for the dual date
approach, since otherwise many of the flagged changes in land cover will relate merely to
local and regional phenological variations arising because of inter-annual variability in
factors such as rainfall.

It is currently unclear whether a useful annual profile of changes in the individual
spectral bands can be used in the same way because of the impacts of bi-directional ef-
fects. The creation of improved data sets at 1 km resolution as part of the AVHRR Land
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Pathfinder Version 2 should allow this to be determined before the launch of EOS-AM. If
such seasonal variability cannot be used will then rely on the prior brightness to help as-
sess whether change has occurred in similar way to that described in above. Overall we
would anticipate that more consistent land cover change products will be created by this
multidate approach.

Initially the land cover change product will predominantly be an indicator that certain
types of change are likely to have occurred. Labeling of the actual changes will be as-
sisted by the application of models of land cover change. These will be based on the ac-
tual land cover present before the change since this will substantially reduce the range of
changes that could occur. Also we intend to use the flags to influence the acquisition of
Landsat data and analyze the to allow more specific labeling of actual conversions to be
provided.

5.2.2.3 Use of Changes in Local Spatial Variability

One issue which will need to be considered is the impact of misregistration on the
change detection product. The current expected 100m 2 x RMS error between dates is at
the margins of acceptability when working at 250m pixel size, because of the introduc-
tion of differences solely as a result of misregistration (Townshend et al. 1992). We will
examine the consequences of these errors on our proposed procedures. It is unclear
whether local correlation methods to improve registration will be successful because the
images to be used will be composites derived from multiple dates We are therefore cur-
rently investigating the use of change detection methods based on changes in variability
of the image. This approach is justified by the piecemeal nature of most change in land
cover leading to increased variability when it occurs. Such procedures can be used with
windows of sufficient size that the expected misregistration of the images has a small im-
pact on change detection. Preliminary experiments have indicated the promise of this
procedure.

5.3. Representation of Land Cover by Continuous Fields Using MODIS Data.

5.3.1 Overview and Background

As part of our NASA funded Global Land Cover Classification project we are using
training sites developed from analysis of existing ground based maps and fine resolution
satellite data to produce land cover classifications of the globe. This is the land cover
class product which is published on the ISLSCP CD-ROM. Using our existing methods
and training data we are currently generating a product at 8 km using the AVHRR Land
Pathfinder Version 1 data set. This will form a contribution to the ISLSCP Version 2 ac-
tivity. We further intend to generate a land cover product at 1 km using the
USGS/NASA/ NOAA/IGBP-global AVHRR data set using current funding from NASA.
This is offered as a contribution to an at-launch MODIS product and we will work to
convert this or other at-launch data sets of land cover into forms needed to support other
MODIS products.

Instead of the conventional land cover classifications, recent work at the University of
Maryland has shown great promise for the creation of products of continuous attributes of
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vegetation components such as the proportions of tree cover, bare ground and the herba-
ceous layer by use of methods such as empirical regressions, decision-tree procedures
and mixture modeling (Defries et al. 1995). Conventionally methods such as mixture
modeling have relied on unmixing using multispectral data, but this recent work has also
exploited the potential of multitemporal sequences (Hanan et al. 1991). These methods
are presently under active development through another NASA grant and a NSF Grand
Challenge grant. Preliminary results are shown in figures 8 and 9 when applied to coarser
resolution AVHRR data at 8 km and 1 degree resolution: they indicate the considerable
potential of this approach (DeFries et al. 1995). As with many global data sets validation
remains difficult (see section 5.7) but comparisons with results obtained from fine reso-
lution data indicate that the predicted forest cover was within 20% of the actual forest
cover for 90% of the pixels (Defries et al. in press). We propose to apply these methods
initially to the version-1 1 km AVHRR global data set and subsequently to version 2 data
sets as they become available and to make these representations of vegetation properties
available as at-launch products. Currently it seems feasible to be confident of producing
global products of tree cover and proportion of bare ground and additional products may
be possible

5.3.2 Algorithm Description

Given the success of the prototype data sets of land cover components, it is proposed
that these methods are applied to MODIS data to create post-launch products of land
cover as represented by continuous fields rather than traditional classes. Such data should
yield considerably improved products compared with those obtained with AVHRR data,
because of the removal of atmospheric effects and because of the higher spectral dimen-
sionality of the MODIS data sets compared with the AVHRR. We therefore propose to
use these techniques based on existing research to create fields of vegetation properties.
Because we have no direct analogs of MODIS data with its combined multitemporal and
multispectral richness it is difficult to be certain of exactly what properties of the vegeta-
tion can be successfully characterized. For example in mixture modeling it is unclear
which end-members will be successfully extracted and what are the resultant continuous
properties we might hope to extract, but we should at least improve the reliability of those
extracted already. In the case of the 250m bands we would of course largely have to ex-
ploit the multitemporal approaches alone.

We are currently using two methods to derive continuous fields of vegetation proper-
ties with AVHRR data: linear mixture modeling and empirical estimation from multitem-
poral data. We expect to apply these methods to MODIS data from the 250 m bands, with
superior results due to improved atmospheric correction and higher spatial and spectral
resolution.

5.3.2.1 Linear Mixture Modeling

Linear mixture modeling is based on the assumption that spectral values in a pixel
contain information about the proportion of each component present within that pixel
(Settle and Drake 1993, Shimabukuro and Smith 1991, Smith, et al. 1990) The contribu-
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tion of each component to the spectral value is assumed to be linearly proportional to the
aerial coverage, hence:

ri = aij xj( )
j=1

n
∑ + ei

where ri = mean spectral reflectance for the ith spectral band of a pixel containing one or
more components; aij = spectral reflectance of the jth component in the pixel for the ith
spectral band; xj = proportion value of the jth component in the pixel; ei = error term for
the ith spectral band; j = 1, 2, . . ., n (number of components assumed for the problem);
and i = 1, 2, . . . , m (number of spectral bands from the sensor system used for the prob-
lem).

The method is sensitive to the values selected as “endmember” values (aij). End
members are pure pixels with 100 percent coverage of vegetation with the respective
characteristic. We will use coregistered high resolution Landsat data to identify locations
of pure pixels. To date, we have used locations known through field studies to have 100
percent coverage as end members.

We have used multitemporal spectral data from the AVHRR Pathfinder Land data set,
namely mean annual values for red and near infrared reflectances, in the mixture model-
ing equation to obtain estimates of proportions for three components: woody vegetation,
herbaceous cover, and bare ground (DeFries, et al. 1996). Each component is thus identi-
fied by its phenological variability as well as its spectral response at a single data.

5.3.2.2 Empirical Estimation of Proportional Cover

An alternative method to estimate proportional woody cover involves empirical linear
relationships between percent forest cover derived from coregistered high resolution
Landsat data and metrics derived from AVHRR multitemporal data. The use of mul-
titemporal data improves estimates substantially over data from a single month (DeFries,
et al. in press). In summary, the method involves 1) derivation of proportional cover at a
coarser AVHRR resolution from coregistered, classified Landsat scenes; 2) stepwise lin-
ear regression to derive a relationship between percent woody cover as the independent
variable and multitemporal metrics, such as mean annual NDVI and difference between
annual maximum and minimum NDVI, as dependent variables; and 3) extrapolation of
the relationship over a larger area to predict percent woody cover. We have applied this
method to central Africa and are currently extending it to the global scale.

5.3.2.3 Proportional Cover from MODIS 250 m Bands

We will test both methods with MODIS data simulated from TM data to determine
which gives more accurate results. For the post-launch product, calibration data to derive
the empirical relationships or, in the case of mixture modeling, the endmember values
will be selected from the global network of high resolution Landsat data that has been
assembled at the University of Maryland, as well as other test sites as they become avail-
able through the Global Land Cover Test Sites project and other activities. The Landsat
data will be coregistered with MODIS data through the use of control points. Sites known
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to be homogeneous at a 250 m resolution will be selected as end members for mixture
modeling. Proportional cover will be derived from coregistered, classified Landsat data.
The proportional covers will be used for calibrating the empirical relationships and for
validating the results.

We will first derive continuous fields indicating aerial proportions of woody vegeta-
tion, herbaceous cover, and bare ground. We also plan to use similar methods to derive
continuous fields of aerial proportions of broadleaf and needleleaf vegetation, as well as
deciduous and evergreen vegetation. If satisfactory results are not obtained for continuous
fields of broadleaf vs. needleleaf vegetation and deciduous vs. evergreen vegetation, we
will base these proportions on the 1 km land cover classification product as estimates for
these vegetation properties. The methods for deriving continuous fields depends on mul-
titemporal data from an annual phenological cycle, so we expect to generate the products
following one year after launch.

5.3.2.4 Validation of Continuous Fields

Estimates of proportional covers will be validated with coregistered Landsat data. We
currently have a globally distributed network of over 160 scenes from which to derive
validation data. For each scene we have ancillary sources or field knowledge to aid the
interpretation. Proportional covers for validation will be obtained through degradation of
the classified Landsat scenes. In addition, IGBP test sites and Global Land Cover Test
Sites will also be used for validation as they become available.
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7. Prior ATBD Reviews and Responses

7.1 EOS Review of June, 1994

The MODIS Land Cover/Land-Cover Change algorithm was reviewed by a panel of
external referees in June, 1994, with the results made available in September, 1994. The
ratings and comments of the panel are shown below. Panel members included Graeme L.
Stephens, Pete Cornillon, Forrest Hall, Ben Herman, Hugh Kieffer, Teriyuki Nakajima,
Jim Mueller, and Ichtiaque Rasool.
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7.1.1 Ratings

Ratings of EOS Review Panel

Criterion Rating*

1. Degree to which product meets EOS priorities 9

2. Soundness (feasibility/practicality) of approach 5

3  Appropriateness of algorithm input 5

4. Completeness of sensitivity and error budget 6

5. Soundness of validation strategy 6

6. Release of useful products at launch 9

    *Rating scale: 9, high or strongly agree; 5, neutral; 1 low

7.1.2 Comments

By far the largest concern with this algorithm is the disparity between the simplicity
of the classification technology used, and that available in the literature; for example, the
NDVI-surface temperature decision tree classification method. A fixed threshold of 35 C
is used to separate grass and croplands from wetlands and forest. Such a simple surface
temperature threshold, even if properly corrected for atmospheric effects, cannot possibly
work for all latitudes, at all times of the season. Surface temperature is quite variable and
is basically not an intrinsic property of the surface. Therein lies its main weakness. The
NDVI thresholds are ok as long as atmospherically corrected NDVI is used and back-
ground effects are accounted for.

Another concern is the ecosystem classes selected. They may be satisfactory as far as
ecosystem process models go, but there are many other uses to which these classes will
be subject. For example, finer partitioning may be needed for converting NDVI values to
biophysical variables. Within the class of conifer defined by the Modis product, the rela-
tionship between NDVI and Fpar is quite variable. To accurately estimate Fpar for the
conifer class for example, the class will have to be substratified into conifer subclasses
for which the Fpar NDVI relationship is relatively constant. At this point, the Fpar can be
aggregated up to any level desired by the ecosystem models. In addition to these concerns
over the classes selected, other concerns were raised by reviewers that these classes might
not be adequate for many energy, water, carbon cycling models.

No error budget was conducted here. To do so would require a system-level analysis
in which errors in mapping ground cover areal extent and distribution are analyzed in
terms of their effects on answering global questions. Quantifying classification at the
pixel level does not provide much insight into performance because one does not know
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how such errors would propagate into regional and global scale questions. Another hin-
drance to validation is not knowing at regional and global levels just how good the in-
formation must be. What is missing in this regard is some accuracy criteria. One which
might be useful is to assert that an algorithm is good enough when it produces signifi-
cantly better information than that currently available. In the case of the land-cover prod-
uct, global vegetation maps already exist. Will the MODIS-based algorithm produce bet-
ter information? An issue is that it is not very clear how much better off the MODIS
product will be over the circa 1978-mid 90’s AVHRR product.

7.1.3 Response

The electronic mail message below, sent to Dr. Michael King, EOS Project Scientist,
was prepared in response to the panel review of version 2.1 of the ATBD. It also includes
some specific responses to comments of mail reviewers that are not reproduced here.

From alan@crsa.bu.edu Thu Dec 22 18:42:38 1994
Return-Path: <alan@crsa.bu.edu>
Received: from kalahari by crsa.bu.edu (8.6.4/Spike-2.1)

id SAA20668; Thu, 22 Dec 1994 18:41:22 -0500
Received: by kalahari (931110.SGI/Spike-2.1)

id AA01027; Thu, 22 Dec 94 18:41:21 -0500
From: “Alan Strahler” <alan@crsa.bu.edu>
Message-Id: <9412221841.ZM1025@kalahari.bu.edu>
Date: Thu, 22 Dec 1994 18:41:20 -0500
X-Mailer: Z-Mail (3.2.0 06sep94)
To: king@climate.gsfc.nasa.gov
Subject: Response to Reviews of MODIS Land Cover ATBD
Cc: fghall@imogen.gsfc.nasa.gov, lc@crsa.bu.edu,
        dhall@glacier.gsfc.nasa.gov,
        SWSHUETE@ccit.arizona.edu, justice@kratmos.gsfc.nasa.gov,
        jpmuller@ps.ucl.ac.uk, swr@ntsg.umt.edu,
        Vern_Vanderbilt@qmgate.arc.nasa.gov, wan@crseo.ucsb.edu
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
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Mike:

Version 3.1 of the MODIS Land Cover and Land-Cover Change ATBD is now
complete and deposited in various anonymous ftp directories as per your
instructions. I regret being unable to provide the revised document by
the November 1 deadline, but many, many hours of work were necessary to
revise the document both to respond to reviewers' comments and to accu-
rately reflect the current state of algorithm development.
In accordance with the instructions in your letter, this mail message
will address the changes in the document and provide specific responses
to the panel's and reviewers' comments.

Note that we plan a MODIS-IDS land cover workshop in late spring or
early fall to introduce IDS teams to the Land Cover Product. The objec-
tives are (1) to increase awareness of the product and its characteris-
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tics among the IDS community; (2) to examine the suitability of the land
cover classification units for IDS applications; and (3) to develop ac-
curacy criteria and validation methodologies that are relevant to IDS
science objectives. (The workshop might be combined with, or be part of,
a broader workshop on MODIS Land Products, but this has not been dis-
cussed yet with MODLAND Team Members.)

OVERVIEW

In the period since the preparation of the original version of the docu-
ment, the pathway to the land cover product has become much clearer. Ma-
jor changes include:

1. Selection of a target system of land cover units for the Land Cover
Parameter that follows the standards now being developed by the Interna-
tional Biosphere-Geosphere Programme (IGBP) for the IGBP-DIS (IGBP-Data
and Information System) 1-km land cover database. These units are now
being vetted by the IGBP Core Projects. Although this set of units may
not respond to every need of every EOS investigator, it represents a
solid starting point that is practical and will immediately satisfy a
large portion of the scientific community. And, we will examine the na-
ture of the units further at the MODIS Land Cover-IDS workshop mentioned
above.

2. An emphasis on the use of statistical per-pixel classifiers in the
land-cover classification process. This represents a step away from the
physically-based NDVI-surface temperature thresholding algorithm that
was presented at the ATBD review, and is a movement toward a statisti-
cally-based methodology that has the potential for higher per- pixel ac-
curacy. Although the thresholding algorithm had the advantage of utiliz-
ing multitemporal NDVI and surface temperature data in a manner based on
biophysical inference, the review panel felt that the procedure was too
simple to provide good accuracy in a global application. Accordingly, we
have refocused on statistical classifiers, especially neural network
classifiers, for the Land Cover Parameter.

3. The processing path is specified much more clearly as a result of on-
going interaction with the MODIS Science Data Support Team and other
Land Team members whose products will be used as inputs. This includes
better specification of input and output data streams as well as im-
proved estimates of processing needs and product sizes.

4. The post-launch product validation issue is now addressed more spe-
cifically in terms of the types of accuracy data that will be provided
along with the product. The validation procedure will allow users to un-
derstand the uncertainty in the classification and model their own er-
rors accordingly. The data will also provide subpixel cover type propor-
tions that can be used in aggregation algorithms to provide accurate
proportional covers at coarser resolutions than 1 km. Alternative vali-
dation procedures as proposed or conducted by IDS investigators will
further be explored.

Before I respond to specific queries by the panel and individual review-
ers, I want to make one general point: that Land Cover and Land- Cover
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Change are empirical, data-dependent parameters. Thus, it is not possi-
ble to specify the exact algorithm to generate them without actually
having the data in hand. In the prelaunch period, the task is to iden-
tify candidate algorithms as specifically as possible, given whatever
test data are available that have MODIS characteristics. The objective
is to be as far up on the curve as possible for a quick start with real
MODIS data.

This is particularly true for the postlaunch Land-Cover Change Parame-
ter. Since it will require at least two years of MODIS data to detect
any sort of annual change, the product cannot be made until at least
mid-2001. This is 6.5 years from now. During that time, we can expect
that the state of the science will change significantly. At this point
in time, our best strategy is to continue with the examination of key
issues of change recognition at global scales using AVHRR rather than
try to develop a specific MODIS algorithm.

REVIEW PANEL

Response to Specific Comments

1. Classification Methodology. The panel's “largest concern” was the use
of the NDVI- surface temperature thresholding algorithm for land cover
classification. As noted above in the overview, we have now moved away
from this approach, and toward the use of neural network classifiers.

In defense of our earlier position, I should state that Steve Running
and Rama Nemani, who are developing the thresholding approach to land
cover classification, are working from a top-down perspective--that is,
they are trying to get the broad patterns of land covers in their proper
locations first, then worry later about per-pixel classification accura-
cies. This is certainly a valid approach, especially concerning the many
problems with the quality of AVHRR 1-km composites at the pixel level.

However, further work by the BU team in the months following the ATBD
review on datasets from small- (Plumas National Forest) and medium-sized
areas (California) confirmed the panel's view that per-pixel accuracies
of the thresholding method as currently devised are not sufficient for
generation of a global product. Accordingly, we are now emphasizing the
use of neural network classifiers for land cover. Because of our close
working relationship with the BU Center for Cognitive and Neural Sys-
tems--one of the foremost research centers on neural networks and their
applications--we are very well positioned to exploit the latest tools in
this field for the MODIS application.

2. Land Cover Classes. Another concern was with the suite of land cover
classes selected. For example, the review noted that it might be neces-
sary to break up conifer (needleleaf evergreen forest) into subclasses
in order to estimate FPAR accurately. (For this particular example, note
that there is a MODIS product that provides FPAR directly- - MOD15.)
The panel's concern has led us to two actions. First, we have provision-
ally adopted a set of land cover units for the product that is in the
process of being vetted by the IGBP Core Projects for the IGBP- DIS
global 1-km land cover database. Since the Core Projects include a very
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broad cross section of researchers working in fields ranging from hy-
drology to carbon cycling, we think these units will be suitable for
most IDS applications. Further, these units are designed to be recogniz-
able with remotely sensed data, since they rely on structural and phe-
nological distinctions that can be remotely sensed.

Second, we plan to conduct a workshop on the Land Cover Product
(mentioned above) that will solicit further input from IDS groups on the
exact nature of the classes and their needs for them. In this way, we
will facilitate awareness of the product and enhance the feedback proc-
ess by which we can best position our product to serve IDS needs.

Note that early in the process of developing the land cover product
(1992), we conducted a survey of IDS PIs regarding their needs for land
cover. The survey was not overly successful. At that time, few investi-
gators had definite ideas about what their needs for land cover from
MODIS were. However, among those who had some notion, nearly all en-
dorsed our concept for a classification based on vegetation life-form
that would include 20-30 global classes.

3. Validation and Errors. The panel noted the absence of an error
budget, suggesting that to construct such a budget would require “a sys-
tems-level analysis in which errors in mapping ground cover areal extent
and distribution are analyzed in terms of their effects on answering
global questions.” They further remarked that knowing pixel- level clas-
sification accuracies “does not provide much insight into performance
because one does not know how such errors would propagate into regional
and global scale questions.” The panel also noted that accuracy criteria
were missing, suggesting that one such criterion might be a comparison
with accuracies of present land cover products.

A systems-level error analysis focused on answering global questions
poses real difficulties for our effort. It would require using suites of
models developed by other investigators and evaluating their sensitivity
to error in land cover labels. We possess neither the expertise nor re-
sources to carry out such analyses as part of the MODIS land cover ac-
tivity. However, what we can do is to work more closely with IDS inves-
tigators and encourage them to assess the sensitivity of their own
global studies to such errors. We plan to do so, beginning at the MODIS-
IDS land cover workshop described above. The first step in this analy-
sis, however, is understanding the types and frequencies of errors that
may be anticipated--in short, the pixel-level classification accuracies
mentioned above. This remains a key topic in our validation plan.

As for accuracy criteria, we may reasonably expect such criteria to come
from IDS teams, especially after conducting sensitivity analyses as
identified above. We will work with IDS teams toward that end. The
panel's suggestion that the accuracy of present land cover products pre-
sents a practical standard for comparison is a useful one, and it can
easily be implemented both during prelaunch algorithm development and
postlaunch validation. Here, the specific target for comparison would be
the IGBP-DIS global 1-km land cover database and the unsupervised clus-
tering and labeling algorithm that will produce it.
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Note that land cover in the presence of mixed pixels does not lend it-
self well to absolute accuracy standards, such as “90 percent correct.”
When a pixel is 55 percent forest and 45 percent grassland, a label of
forest may be technically correct, but misleading for many applications.
This means that accuracy, labeling, and scaling processes all have to
accommodate the mixed pixel problem.

Forrest Hall's E-Mail Comments

In the process of clarifying some of the Review Panel's comments, I con-
tacted panel member Forrest Hall at GSFC. As part of our e-mail dia-
logue, he raised two issues about the Land Cover Product.

1. Spatial resolution. First, Forrest questioned the need for a product
at 1-km spatial resolution, remarking that the finest resolution that
global climate modelers have identified as usable within the next decade
is 1/4 degree by 1/4 degree. I raised this issue with other members of
the Land Team, and our consensus is that there are many regional appli-
cations of global land cover, ranging from carbon balance modeling to
hydrology, that can easily exploit 1-km data. Perhaps the difference is
that Forrest is looking at the problem from the ISLSCP perspective,
while the Land Team is coming more from the IGBP perspective. The re-
vised ATBD now contains a section on spatial resolution that cites the
IGBP call for land cover at 1-km spatial resolution. It also points out
that other 1-km resolution MODIS products will require a 1-km input.

 Another important reason for a 1-km resolution product is that land
cover proportions change with spatial aggregation. Smaller, more frag-
mented classes disappear with coarser scaling while larger, more abun-
dant classes grow. If coarse-scale algorithms require land cover propor-
tions as inputs, they will be wrong unless aggregation is carried out
carefully to account for this effect. This requires initial classifica-
tion at the finest practical scale, and for highest accuracy further re-
quires subsampling at resolutions of about 100 m. These issues are dis-
cussed in more detail in the revised document.

2. Nature of Product. Second, Forrest raised the idea that the Land
Cover Product would provide more than just land cover. He suggested it
could be more like the ISLSCP Initiative 1 or 2 databases, which also
include such parameters as monthly albedo, FPAR, LAI, biomass density,
canopy green fraction, roughness length, standing water fraction, etc.
Some of these parameters are inferred from land cover--for example,
roughness length is typically inferred from vegetation height and cover.
Others, such as FPAR, LAI, and canopy green fraction, are inferred from
vegetation indexes, land cover, and a model (e. g., SiB2). Forrest gen-
erously sent page proofs of an article by Piers Sellers et al. in IJRS
that provided an example of how such a database was derived at the 1-
degree scale. Note that the MODIS Land Team provides a number of these
as separately-derived products. Of course, this is quite a different
concept for the Land Cover Product--one that is well beyond what was
originally conceived or proposed.

My own position on this issue is that if ISLSCP-style modelers need a
database of this nature, the Land Group should seriously consider pro-
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viding it. With proper coordination among team members (and due atten-
tion to scaling issues), it would not be very difficult to aggregate our
products into a monthly 1/4-degree by 1/4-degree (=772 sq km) grid. The
products would include at least vegetation cover type, albedo, LAI, FPAR
and VI, produced by the team. These products could then be merged with
data that are derived from other models (e.g., SiB2) or are obtained by
inference from the literature.
Note that Forrest and Piers anticipate a SWAMP/ISLSCP-sponsored meeting
on the ISLSCP Initiative II Dataset in the late February time frame.
MODIS will be represented. There will be also be a meeting of the Land
Group, focusing on the interrelationships among land cover, BRDF/Albedo,
and surface reflectance at BU in mid-January. I believe we can have a
preliminary discussion of the issue at that time.

MAIL REVIEWS

Note that it is not possible to provide a document of a reasonable
length and prepared in a reasonable amount of time that also addresses
every possible concern or contingency that might be raised in the devel-
opment of a global product such as land cover. The present revision of
the ATBD focuses most directly on the primary issues raised by the Re-
view Panel. However, there are a number of low-level issues that remain
to be addressed more fully in later versions of the document and will
either wax or wane in importance as product development proceeds. Some
of these issues are cited by reviewers and discussed below. If not well
defended in the document, at least they are discussed here and you may
be sure that we are thinking about them.

Cihlar Review

1. Input Products and Compositing. Cihlar points out that the accuracy
of the land cover product depends on the accuracy of the input products,
and is concerned with the cloud screening and compositing process. Al-
though we have addressed the compositing process in more detail in the
revised ATBD, we are still trying to understand the cloud screening
process better. Because the Land Cover Product will use surface reflec-
tance as an input, the actual cloud screening will be done as part of
that product. We are presently in a dialogue on this issue with the sur-
face reflectance producers.

 As for the accuracy of input products, other team members are still
dealing with accuracy issues at this time, and it is not certain what
error levels will be. However, we believe that our plan to exploit si-
multaneously spectral, spatial, temporal, and directional information is
quite robust, and that as long as signal-to-noise ratios in input prod-
ucts are reasonable, our product will not suffer.

2. Land Cover Units. Cihlar suggests that MODIS' multiple spatial reso-
lutions may impose a hierarchical classification structure; that the
classification could be more detailed, with a larger number of units ca-
pable of being collapsed for different purposes; that mappings of the
MODIS classification to others should be provided; and that the units
need to be defined as objectively as possible.
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As discussed above, a provisional set of land cover units, vetted by the
IGBP, is now in place, and further examination of the classification
scheme is ongoing.

3. Supervised vs. Unsupervised Classification. Cihlar notes that a com-
bination of supervised and unsupervised classification techniques may be
desirable to a reliance on supervised techniques alone. We believe that
supervised techniques are better suited to our situation, in which we
will have good information on land cover for training only at a limited
number of sites. However, we remain open to using unsupervised tech-
niques, as we state in the present version of the ATBD.

4. Land-Cover Change. Cihlar makes the points that the land cover change
parameter should be sensitive to seasonal differences and be produced
quarterly; may need to be combined with ancillary data in a GIS; and
could provide unlabeled change vectors with translation tables, thus fa-
cilitating differing interpretation of changes. These are all good
points that will be taken into account as the Land-Cover Change Parame-
ter is developed. Note that the product is already planned for quarterly
production.

Townshend Review

1. Classifier. Townshend suggests a two-stage classifier--a simple con-
ventional technique first, followed by a more sophisticated classifier
(e. g., neural net) on equivocal pixels. This is a good idea that is now
incorporated in the document.

2. Input Data. Townshend raises several issues on the quality of input
data--radiometric correction, geometric rectification, and atmospheric
correction. We believe that the basic discussion of these issues belongs
in the appropriate ATBDs for these algorithms and products. However, we
are very cognizant that the quality of the Land Cover Product is depend-
ent on the quality of its inputs. (See discussion under Cihlar 1.
above.)

Loveland Review

1. Land Cover Variability. Loveland considers that the ATBD as reviewed
pays too little attention to problems of spectral/temporal confusion,
landscape complexity, and interannual variability of land covers. We
agree that these issues need further development, and are not well ad-
dressed, even in the present version of the document. However, they are
very data- and region-dependent. At this point, resources are not avail-
able for a global survey of the variability of specific land covers as a
precursor to technique development. Our strategy is to address these is-
sues as individual test sites within ecoregions come on line. Still, the
caveat is an important one for allocating resources and anticipating
problems.

2. Improvements in Product Quality with Time. Loveland suggests that al-
though our first efforts may not be fully satisfactory, they will im-
prove with time. This is perhaps a realistic assessment, especially con-
sidering the problems in land cover variability discussed above. How-
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ever, we should still target for a high level of accuracy in the first
products we prepare.

3. Land Cover Units. On this topic, Loveland notes that the list of land
cover classes needs to be identified; land cover classes need to be re-
lated to the biophysical characteristics of the land cover; classes need
to be linked with types in current use to provide continuity; and that
classes need to include logic for handling mixed covers and heterogene-
ous landscapes. All these concerns are satisfied with the present prod-
uct plan as described in the ATBD.

4. Ancillary Data Specifications. Loveland suggests that specifications
for ancillary data (climate and DEM) need to be provided in more detail.
We have dropped the need for a climate database, instead relying on an
ecoregion-based processing scheme to make the broad distinctions that we
hoped to gain from the climate database. As for the DEM, it will be used
only as an elevation variable to distinguish broad land covers with
similar signatures but different topographic habitats. For this purpose,
any reasonable accuracy standard should suffice.

5. Land-Cover Change Parameter Classes. Loveland points out that we have
focused primarily on issues of landscape biophysics for this parameter,
while the application of the product is likely to be broader, including
issues of human modification, adaptation and mitigation. Inasmuch as the
focus of the EOS global change agenda is on global climate change and
not on human activity, I believe that our focus is properly placed. How-
ever, human activity has undoubtedly altered our planet's climate and
will continue to do so in the future. This means that our product must
be sensitive to those anthropomorphic processes that influence climate.
We plan to ensure that such a focus is maintained as the Land-Cover
Change Parameter is developed further.

Field Comments

1. Neural Net not Mature. Field points out that the neural net classi-
fier we proposed is not mature and could require further development. We
concur, and development is ongoing.

2. Land Cover Units: Field expresses a number of concerns with land
cover units. He notes that the units are not suitable for all classes of
models for which they might be used and suggests that several different
classifications might be carried out and presented as alternative prod-
ucts. These could range from a very simple set of units that might be
suitable for climate models to a system of many units (hundreds) for use
in modeling nonmethane hydrocarbon emissions or soil emissions of ni-
trous oxide. A further alternative is not to classify at all, but to
produce an output of continuous variables associated with land cover
type, such as woodiness, leaf longevity, or fraction of perennials.

These are interesting ideas that deserve consideration. It is certainly
true that no set of units will suffice for all applications, and this
issue will be aired more directly with IDS investigators. Carrying out
multiple classifications adds a degree of cost and complication beyond
that currently planned.
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It is hard to envision a system of hundreds of units that are recognized
on a global scale and that are also remotely sensible with good accu-
racy. That is, there is no point in setting up a system of units (e. g.,
a floristic plant classification) that does not have an inherent physi-
cal basis for a differential response in the emission and scattering of
electromagnetic radiation, or in the temporal, spatial or directional
distribution of that radiation, that is sensible with the instruments at
hand. If such a procedure works, it will only be for a limited number of
classes that possess attributes of spectral signature, structure and
phenology that are coincidentally correlated with the insensible attrib-
ute. In our view, it is better to recognize a smaller set of more
broadly-defined units with good accuracy than a larger set of finely-
defined units with poor accuracy.

One possibility would be to follow the example of Loveland's classifica-
tion of the conterminous U. S. from NDVI composites. In this work, a
large number of classes are recognized by unsupervised clustering and
classification, and then collateral data are used to characterize them.
The problem with a global approach of this nature is that the interpre-
tation is dependent on the quality of the collateral data, which for
many areas will be nowhere near the standard for the U. S. Perhaps it
would be possible to simply provide the class map without labels, and
allow individual investigators to label them based on their own knowl-
edge and the inferences they wish to make. In any event, these issues
will be discussed directly with IDS investigators in the future.

Field's idea that continuous variables could be output instead of cate-
gorical classes is an interesting one, but it would require much devel-
opment. To our knowledge, no algorithms exist for such products. If this
idea captures the interest of IDS investigators, it could be pursued as
a postlaunch activity.

Alan Strahler
Center for Remote Sensing
Boston University

7.2 SWAMP Review of May, 1996

The MODIS Land Cover/Land-Cover Change algorithm was reviewed by a panel of
external referees in May, 1996 convened by the Science Working Group, AM Platform
(SWAMP). Results were made available in early October, 1996. The ratings and com-
ments of the panel are shown below. Panel members included Marvin Bauer, Josef
Cihlar, Robert Davis, Narendra Goel, Yan Kerr, John Miller (Chair), John Mustard, and
John Price.
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7.2.1 Ratings

Ratings of SWAMP Review Panel

Rating1

Criterion
Land
Cover

Land-Cover
Change

Townshend
Proposal

1a. Technical/scientific soundness of algo-
rithm/approach

7/32 8 8

1b. Value of the data product to the land sci-
ence community

2 7 9

1c. Soundness of the validation strategy 7/22 6 7

1d. Extent to which 1994 review issues have
been addressed

8 N/A N/A

2a. Extent to which product is (1) useful to
broader needs of community and (2)
meshes with other data products

7 6 7/03

2b. Assessment of plans for comparison or
enhancement of similar data products
from other instruments

4 4 2

1Rating scale: 9, excellent, strongly agree, high; 5, average, neutral, medium; 1
poor/needs work,disagree, low; 0, insufficient information.

2Second value is for land cover algorithm used by Running in LAI/FPR product.
3Values refer to two parts of criterion.

7.2.2 Comments

The text of the comments of the panel is reproduced below. (Note that section num-
bers below are those of the SWAMP report, not this document.)

7.2.5a. Data Product: MOD12 - Land cover type

Strahler et al.

(Review based on ATBD-MOD-13 dated November, 1994
and presentation at workshop May 16, 1996)

(Comments are also made on the work of Running et al:
ATBD MOD17
Presentation 05/96)

(a) technical/scientific soundness of the algorithm/approach described (Rating:
7/3)
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The basic approach consists of: rigorous processing of MODIS data (from other MODIS
products), using of a variety of data sets to provide as much ancillary information as pos-
sible to improve chances of correct classification, using new recent classification algo-
rithms trained on known sites, and validation at various sites around the world. In princi-
ple, the approach is sound. However, a number of issues need to be dealt with:

(1) The neural network classifiers do not permit, or at least they make difficult, insights
into the classification process and reasons for misclassifications. Their performance is
limited by the accuracy and representativeness of the training data which are likely to be
deficient in many parts of the world (see below). They are likely to perform well over ar-
eas similar to those used to train and are more likely to “blow up” outside of these areas.
Note that the reference for ARTMAP is from a simple land environment (Sahel, p.19).
Hara et al (p.19) had mixed results with neural net classifier, and had to add Maximum
Likelihood (ML) classifiers to make it work for only three, quite distinct cover types. The
accuracy results presented in 05/96 (for this and other classifiers) are not particularly en-
couraging.

Use of the at-launch product of EROS/IGBP is acceptable but land cover data from a
range of test sites should be used to evaluate and document its accuracy.

The proposed resolution of 1 km negates a major advantage offered by MODIS over pre-
vious data sets - higher spatial resolution. Even with AVHRR 1 km has consistently been
the goal because land cover is highly heterogeneous at the sub-km scale and so are the
processes (especially where anthropogenic effects are significant). The arguments raised
on p. 24 are true but there are other sources of error. Strong effort should therefore be
made at producing a higher resolution product (at least 500m).

The proposed data set (3.1.1.1.1) consists of products representing various time periods
and potentially changing surface conditions. For example, surface reflectances will be
obtained once per month (from any date, thus allowing a wide range of reflectance for
similar cover types, e.g. in cropland, northern areas,.. - the compositing procedure envi-
sioned is not spelled out, and has not been discussed in the published literature - it seems
that the team proposes to do the compositing, p. 25); VI also once per month (for the
same data? not clear; will the VI be computed from the surface reflectances?); snow/ice
cover from weekly maps could represent a different date than surface reflectances or
NDVI; same for surface temperature. In using such a potentially disparate data set there
is a danger of strong noise overwhelming (often weak) cover type signal. The data set is
to have 18 variables per pixel. (From the presentation it was not completely clear which
of the above are still considered for the product, and which have changed).

It is proposed to use data from 12 months. In areas with seasonal snow cover this is likely
to present a significant problem because seasonal snow is not an inherent land cover
characteristic, has a marked effect on the measured signal (as well as its BRDF properties
etc.), and tends to be highly variable. The ATBD does not explain how this will be dealt
with. One approach is to screen snow-covered parts of the data out (Cihlar et al. RSE
1996, in press).

Strong use of temporal information will increase the likelihood that the classification re-
flects the seasonal dynamics of the year when the data were obtained (regional
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droughts,...). An option is to de-emphasize the temporal dimension in the data set, e.g.
through extraction of intermediate/higher level variables.

Regarding use of BRDF parameters for the classification: this seems reasonable but was
it tested, and with what results?

 The supposition that dividing the land surface into ecoregions for classification will in-
crease efficiency needs verification. It has the disadvantage of having to resolve misclas-
sifications at the edges, with attendant inconsistencies and potentially arbitrary rules.
Ecoregion boundaries are often arbitrary and the reconciliation could lead to much addi-
tional work. It would seem preferable to have a consistent approach for as large areas as
possible, at least a continent.

It is proposed to train the statistical classifiers with data from 40-60 sites around the
world. This approach has some pitfalls: it limits the accuracy of the final product because
such classifications (especially if derived from satellite data such as LANDSAT) are only
70-90% accurate; it assumes that equivalent “map” (same spatial resolution and cover
types) can be derived from the high resolution data to train the MODIS data - this is not
straightforward; it assumes that the detailed classification is valid for the period of
MODIS data coverage - this may be difficult to achieve everywhere; it requires a suffi-
ciently large sample of “pure”, unmixed pixels for the various cover types (especially as
the proposed number of input channels is large) which may be difficult to achieve in
many situations; and it assumes that signature extension will work, and this has generally
been difficult to achieve in most studies to date.

As an alternative to the complex classification approach the team should consider the use
of a “small” number of intermediate variables which describe the surface characteristics
(e.g., Defries et al. 1995, RSE 54: 209), understand the land cover dependence of these
variables, and use relatively simple classifiers (not forgetting about minimum distance) to
produce classification results. Note some of the most detailed results so far have been
achieved with single date images ( AVHRR channel 1 and 2; Beaubien and Simard, 1993,
Methodologie de classification des donnees AVHRR pour la surveillance du couvert
vegetal. Proceedings of the 16th Canadian Remote Sensing Symposium, Sherbrooke,
Quebec: 597-603.)

Re: Classification by Running et al: (Rating: 3)

It is proposed to use a simple classification scheme, designed to respond to the needs of
BGC modelers. The classes are intended to be extractable from remote sensing data. The
classification approach features a small number of classes and fixed thresholds to sepa-
rate these on a global basis.

The use of a fixed set of thresholds globally to separate these classes with a reasonable
accuracy is not likely to succeed because of the variety of environments. A comparison
with the USGS land cover map quoted at the presentation (70%) bears this out (although
it should be noted that accuracy of the latter is not known precisely either). This is par-
ticularly true for surface temperature. In defining a more specific set of thresholds for dif-
ferent regions/biomes one must get closer to the approach followed by others (e.g., Stra-
hler et al., ..) which raises the possibility of several different products.
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(b) value of the data product to the Land science community (Rating: 2)

Land cover is a critical parameter for most land applications. Its value would be signifi-
cantly enhanced if produced at a higher spatial resolution. If 1 km is adhered to one can
only hope for a better accuracy compared to pre-launch products.

(c) soundness of the validation strategy (Rating: 7/2)

Re Strahler et al: (Rating: 7)

Sources of error/uncertainty: good discussion. The cloud contamination problem depends
in part on the quality of cloud screening (will be especially challenging for land due to
broken clouds, snow, haze/smoke) and on the ability to compensate for missing data. The
ATBD does not discuss how to deal with missing data. NN classifiers may be able to do
that but there should be a backup plan. Interpolation is a possible option (Cihlar et al.,
RSE 1996 in press).

Another factor not considered in sufficient detail is surface water class. The proposed in-
put data will not provide useful information about water, and another approach is re-
quired. A water mask would be ideal but unless it is availability at a sufficient resolution
worldwide a parallel methodology (based e.g. on a one-time, single-date, cloud-screened
images) should be examined.

It is very unlikely that 100% accurate reference data will be available to the team. Thus
the specified product accuracy will be obscured by this uncertainty. This needs to be
worked out and the implications for the users ascertained.

The concern about mountainous areas is well placed but not enough information is pro-
vided about the proposed solutions.

The idea of fuzzy labeling has some merit but it should be noted that users will need de-
finitive labels (e.g., this pixel has 45% of A and 55% of B), which comes back to accu-
rate classifier in the first place. The problem will be mitigated if smaller pixels are used.

Re Running et al: (Rating: 2)

No detailed validation strategy has been described. Broad comparisons with other global
data sets (whose accuracy may not be well known) is not sufficient.

(d) extent to which 1994 ATBD review issues have been addressed (Rating: 8)

The approach of Strahler et al addressed many of the issues raised by the ATBD review.
The adequacy of the proposed classes in terms of the needs of carbon, energy, and water
cycle modelers has not been assessed, nor has the classification accuracy required by
these models. Recognizing limitations in the ability of satellite data to provide compre-
hensive information for modeling purposes (e.g., wetlands) the implications need to be
examined. This requires collaboration between the classification teams and various mod-
eling groups.

(e) near-term recommendations for improvements to the data product

• It is recommended that one MODIS-based land cover product be generated as
soon as possible after launch, as detailed (including pixel size) and accurate as
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feasible given the available data and knowledge of information extraction tech-
niques.

• The product should have categories that can be characterized and/or generalized
for use in the various carbon, energy, water cycle models. This product should be
comprehensively validated with 100% accurate data where possible. For pre-
launch, the product based on 1992 global 1 km AVHRR data can be employed.
However, effort should be made to define this product in more detail and proceed
with a pre-launch validation program.

• MODIS scientists should make efforts to collaborate with IDS teams and others
outside EOS in comparing classification strategies and validating candidate prod-
ucts in a range of environments.

(f) long-term recommendations for improvements or additions to the data prod-
uct

• The classification product team should collaborate with the modelers to determine
the impact of the classification on the modeling results, and to plan future im-
provements in the classification scheme. Other user communities should be can-
vassed for their needs.

• The highest spatial and thematic resolution feasible at the global level should be
aimed at. In developing future products other related activities, both within EOS
and by other groups, should be taken into consideration.

7.2.5b. Balance of Land Data Products as generated by EOS-AM 1 (i.e. ASTER,
MISR, MODIS) to meet the needs of the broader Land science community

(a) extent to which the data product (and its accuracies) is useful to the broader
land science community and meshes with the other instrument data products
(Rating: 7)

This will be a very useful product, provided it is spatially detailed, has adequate land
cover categories (thematically rich, perhaps 15 to 20 initially), and is accurate.

(b) assessment of plans for the comparison or enhancement of similar data
products from the other instruments? (Rating: 4)

This product will be unique at the global level.

(c) recommendations for changes to improve the balance of land data products

See recommendation above (one pre-launch, one immediately post-launch product).
_____________________________________

7.2.6a. Data Product: MOD12a Land cover change

(Review based on ATBD-MOD-13 November, 1994 and
presentation at workshop May 16, 1996)

(a) Technical soundness of the algorithms/approach described: (Rating 8)
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The 1994 ATBD noted the preliminary nature of the description provided. Five ap-
proaches were described at the presentation but the algorithm has not yet been finalized.
The various approaches are all likely to produce information on change but they have dif-
ferent strengths and weaknesses, and would probably be optimum for different environ-
ments. For an EOS land cover change product the consistency, stability and “meaning”
(information content) of the product should all be relatively stable.

Note that the derivation of this product should be based on fully-corrected MODIS data at
the highest resolution feasible (preferably 250m).

(b) Value of the product to the Land science community: (Rating: 7)

This product will give a general idea of changes occurring globally over land in a given
year. It should therefore be useful for public policy discussion and general awareness of
the changes occurring. This assumes that the changes can be correctly classified, not just
detected and quantified. From the scientific perspective the value of the product is less
clear. It should be useful for stratification purposes, as a tool to focus further efforts etc.,
but further exploration of the changes indicated by this product must be based on other
(lower level or other types of) products and models. This product may serve for prelimi-
nary/independent validation of the models outputs.

(c) Soundness of the validation strategy: (Rating: 6)

It is not clear what is validated. The chosen algorithm will produce a result, and there is
no equivalent surface variable to compare with. Only the type of change can be validated
once it is detected. Thus it is not guaranteed that the changes will occur at the LANDSAT
Pathfinder sites, although some are bound to take place there, given 120 locations. Same
comment for the IGBP sites. This is in addition to the (anticipated by ATBD) inferior
quality of some of the surface information. Especially important in this respect is up-to-
date satellite data coverage and recent (post-launch ) surface data.

 The post-launch validation strategy (reliance on more detailed satellite and other) is rea-
sonable but the plans are not well developed at this stage.

(d) Extent to which 1994 ATBD issues have been addressed: (Rating N/A)

No issues raised in 1994.

(e) Near-term recommendations for improvements to the data product

• Define one (or a limited number) of algorithms to be used, and thoroughly evalu-
ate their characteristics/peculiarities so that useful products can be generated
shortly after launch.

(f) Long-term recommendations for improvements or additions to the data
product

None.

7.2.6b. Balance of Land Data Products as generated by EOS-AM 1 (i.e. ASTER,
MISR, MODIS) to meet the needs of the broader Land science community
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(a) extent to which the data product (and its accuracies) is useful to the broader
land science community and meshes with the other instrument data products
(Rating: 6)

This product should be very useful to the earth science community, for stratification,
planning field experiments, and assessment of the dynamics of the global ecosystems.

(b) Assessment of plans for the comparison or enhancement of similar data
products from the other instruments (Rating: 4)

This is a unique product. Data from other instruments (ASTER, ETM) will be used to
analyze the detected changes.

(c) Recommendations for changes to improve the balance of land data products

None.

_____________________________________

7.2.7a. Data Product: MODLANDCOVER - (New proposal by Townshend)

(Review based on presentation and summary notes at work-
shop May 16, 1996)

General comments:

This product is brand new and complements the ATBD land cover and land cover
change. It is based on a much more classical approach and on a good experience of land
cover classification, though somewhat restricted to a few ecosystems. The aim here is to
prepare an at-launch research product, and to provide help for the land cover ATBD. We
can only encourage this, considering what we have seen of the planned product.

Also a definition of what is meant exactly by land cover change would be useful; if it is
obvious for deforestation it is much less so for desertification or land use changes.

(a) technical/scientific soundness of the algorithm/approach described (Rating: 8)

It must be said at the start that the proposed algorithm is more research-oriented than
“operational”. Consequently there are several issues to be dealt with and the author seems
to be well aware of the different caveats. The main advantage of the proposed approach is
(a) to effectively use the 250 m resolution, (b) to investigate other classifiers which are
less exotic and already tested (Markov's for instance). The authors will rely on other
MODIS products (cloud mask for instance) but with care which seems to indicate that he
had already evaluated the product. The points of a little concern are linked to the use of
thresholds (depending on viewing conditions, environment, errors in the processing
chain,....) and the choice of and taking values within a window. Subtle changes in vege-
tation cover do occur over small gradients which might give way to a blurred response
over too large a window, making it undetectable. However, the authors seem to be aware
of the problem, as they are aware of the land cover change detection issue of mixing sea-
sonal an inter-annual variations with actual land cover change. A good ratio of past ex-
pertise and test of new methods with some pragmatism is recommended. Mixture mod-
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eling, Markov's random fields and image segmentation are quite promising from the ex-
perience of others in the field. In addition, the temporal aspects could be used more, as
they have proven to be extremely useful in both phenology monitoring (and hence vege-
tation type identification) and effective cloud decontamination.

(b) value of the data product to the Land science community (Rating: 9)

There is no question on the usefulness of such a product for the land science (and appli-
cation!) community. Land cover is a crucial product for both other algorithms and for
most land application (NPP, carbon and water cycle etc...). As the authors propose to de-
liver a product at 250 m it will be all the more useful.

(c) soundness of the validation strategy (Rating: 7)

The validation strategy is sound but seems to be very ambitious. One might have ex-
pected to see more IDS and eventually other instrument team members involved. The list
of persons given in section 12 corresponds to busy individuals who might not be able to
devote a sufficient amount of time to the validation process. Anyway for such a product,
validation is not straightforward and the use of LANDSAT to assess changes is probably
the way to go. Validation will nevertheless remain an issue for all the remote areas. The
meaning of accuracy, even at 250 m is not clear.

(d) extent to which 1994 ATBD review issues have been addressed

Not applicable.

(e) near-term recommendations for improvements to the data product

• The data product is not yet fully mature as the proposal has just been put out. Ex-
cept for what was written above, the main issues seems to have been addressed
and we encourage the team to follow the steps indicated in their proposal.

(f) long-term recommendations for improvements or additions to the data prod-
uct

• Not really applicable here as the intent is, we believe, to eventually merge the ef-
forts with the current land cover/change product.

7.2.7b. Balance of Land Data Products as generated by EOS-AM 1 (i.e. ASTER,
MISR, MODIS) to meet the needs of the broader Land science community

(a) extent to which the data product (and its accuracies) is useful to the broader
land science community and meshes with the other instrument data products
(Rating: 7/0)

The product will be useful for the community at large, at least for all studies/instruments
with medium to low resolution, as long as it will be “accurate enough” which will proba-
bly be the case. (Rating: 7)

However we notice that there is almost no reference to other instruments (MISR,
ASTER) as inputs and that there is no discussion on how to intercompare/standardize
products. (Rating: 0)
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Otherwise, the proposers have close relationships with international programs which is
certainly a plus.

(b) assessment of plans for the comparison or enhancement of similar data
products from the other instruments? (Rating: 2)

Apart from LANDSAT (and this point is quite interesting and promising) there are NO
plans to interact with other instruments.

(c) recommendations for changes to improve the balance of land data products

We would strongly suggest to the proposers to:

• Standardize inputs/outputs with other instrument teams

• Develop a common strategy for validation sharing the efforts and costs
(instrument teams and IDS)

7.2.3 Response

The following text was prepared in response to the specific comments of the review
panel, which are reproduced above.

I. Technical/scientific soundness

1. The panel notes several limitations of neural network classifiers,
including (1) difficulty in deriving insights into the classification
process and reasons for misclassifications and (2) dependence on the
quality of the training data. They also note that (3) the test of ARTMAP
cited in the ATBD is overly simple and (4) the accuracies presented at
the review on 5/96 are not particularly encouraging.

Every classification method has advantages and disadvantages. The main
strength of neural network classifiers is that they provide a disjunct,
curvilinear partitioning of measurement space that can follow training
data more accurately than conventional multivariate partitionings, such
as those of the maximum likelihood classifier or discriminant functions.
Generally, this behavior will be an advantage, rather than a disadvan-
tage, for achieving high classification accuracy. Another advantage is
that, once trained, neural network classifiers run much more quickly
than conventional multivariate classifiers, which is an important con-
sideration for a global processing algorithm.

The internal structure of a trained neural network contains the informa-
tion used to discriminate among classes, but since it is carried in the
weights within the neural feedback structure, it is typically difficult
to analyze and understand. However, some progress is being made. Gopal
and Woodcock (1996) analyzed the internal structure of a neural network
using principal components of network weights in a study involving
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change detection. The study reveals that the neural network exploits the
same identifiable scene characteristics as other multivariate change de-
tectors, such as Gramm-Schmidt orthogonal functions. Note also that this
area is receiving a lot of attention within the neural net community,
and we can expect good progress to continue in the near future.

As is the case for all classifiers, the representativeness of the train-
ing data is an important factor in achieving high accuracies. Yet this
is not the overriding criterion, as many studies have shown that classi-
fication accuracies increase when neural net classifiers are simply
swapped with a maximum likelihood classifier trained using the same
data. Jackknifed trials of varying training/testing data subsets show
consistent results, indicating that accuracy gains are not overly sensi-
tive to the exact selection of training data. Moreover, there are ap-
proaches that can help overcome the limitations of specific training
sets, such as that of Brodley and Friedl (1996), described more fully in
the ATBD, in which training pixels that are classified equivocally by
multiple classifiers are discarded as outliers.

In the period since the preparation of the prior ATBD, we have expanded
our testing of the neural net classifiers, and confirmed their superior
performance with respect to maximum likelihood. These studies include
the classification of land covers (a) in the Sahel using 1-km AVHRR data
(previously reported); (b) in Austria using TM data (Fischer et al.
1996); (c) in Walnut Gulch/Cochise County, Arizona; and (d) globally us-
ing composited AVHRR NDVI data at 1-degree spatial resolution. In each
case, the neural network classifier significantly outperformed the maxi-
mum likelihood classifier used as a control by 5 to 15 percent. We have
also included studies of decision tree classifiers in cases (c) and (d)
and shown them to be on a par with neural nets, thus providing an alter-
native approach that may ultimately outperform neural net learning.

We are surprised at the review panel's remark that the results presented
in 5/96 are not particularly encouraging. The classification accuracies
using neural networks and decision tree classifiers that we are typi-
cally in the 85 to 90 percent range (see section 3.1.4). Given the di-
versity of signatures of the land cover types, we believe that these re-
sults are very good, and represent the state of the art for classifica-
tion of coarse land covers using satellite data. Our presentation did
cite some results for the Walnut Gulch/Cochise County study showing ac-
curacies around 75 percent; however, we believe these are low due to
overly generalized labeling of the training and testing data (see sec-
tion 3.1.4.1.1).

Overall, our strategy is to develop neural network and decision tree ap-
proaches as far as practical in the prelaunch era so that we are pre-
pared to use the best, most effective “advanced technology” classifiers
as MODIS data become available. Note that it would be easy to step down
to more conventional techniques in the postlaunch era, should they be
preferred, whereas it would be very difficult to try to adopt new ap-
proaches without specific experience with them.

2. The panel states that the use of the EROS/IGBP dataset is acceptable,
but that its accuracy should be evaluated and documented.
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Agreed. As part of his effort to provide the at-launch dataset, Town-
shend is developing a plan to assess accuracy of the at-launch product.
The accuracy of the IGBP product is the subject of a careful study pro-
posed by Jack Estes of U. C. Santa Barbara, with Strahler as a Co-
Investigator. If funded, it will provide the best documentation of accu-
racy for a global product ever attempted. It will also provide the op-
portunity to acquire a validation database that will be of immediate ap-
plication to the MODIS product.

3. The panel notes that MODIS provides a new source of global data at
higher spatial resolution and requests that strong efforts be made at
producing a product at 500 m or finer.

There are a two major technical obstacles to providing data at finer
resolution than 1 km. First is the problem of geolocation accuracy and
change in pixel size with scan angle. As documented in the ATBD, ex-
pected geolocation error is +-85 m along track and +- 153 m across track
at nadir (3 sigma values), and pixel size increases to 1103 m by 2415 m
at ±55° scan angle. These values provide an effective IFOV of the in-
strument's 500 m bands of 656 m along track and 960 m across track when
compositing samples over time. Moreover, no single date image will over-
lay that of a prior date exactly, so interpolation (and consequent
smoothing) is required. Thus, the information content of the data does
not support 500 m resolution, especially in the across-track (along-
scan) direction.

Second is the problem of computation. A halving of spatial resolution
produces a fourfold increase in processing time and a fourfold increase
in the size of intermediate datasets. The issue is not so much in the
classification, which is done infrequently, but in the resolution of the
input data. The land cover algorithm uses spectral data that are cor-
rected for atmospheric and view angle effects by the BRDF/Albedo algo-
rithm. To produce these data at finer resolution means running this code
at finer resolution, which quadruples the processing time and data vol-
ume. This algorithm is already one of the “tall poles” in MODIS Level-3
processing, and it will be some years after launch before EOSDIS will be
able to accommodate such a computation load. (Note that current esti-
mates are that EOSDIS will not be able to provide products much beyond
Level-1 at launch, and that it will be some time before global Level-3
products are made.)

These factors will prevent us from making a finer resolution product on
the global scale in the immediate postlaunch era. However, it would be
possible to make a 500-m research product for some selected regions as a
way of developing appropriate algorithms for a next-generation product.
This would entail individual rectification of near-nadir image swaths
from clear dates to build a suitable high resolution database. We will
investigate this possibility and try to provide such products to test
interest and demand.

4. The panel observes that a number of details of the compositing proce-
dure are not specified in the ATBD they reviewed. Moreover, they are
concerned that data for a grid cell could come from any date within the



MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change 91

32-day compositing period, thus introducing temporal noise into the
data.

The compositing process is now more fully documented in the present ver-
sion of the ATBD.

When multiple values of an input parameter are available, the compo-
siting process will select the one with the best quality, and thus there
may be temporal noise in the dataset. However, a key attribute of both
neural net and decision tree classifiers is that they are robust and
handle noise gracefully. In fact, this is one of the reasons for select-
ing these algorithms for the classification procedure. In addition, both
neural nets and decision trees perform feature selection as part of the
training process. In the case of decision trees, the selection is ex-
plicit and based on a number of rather sophisticated algorithms; for
neural nets, the selection is implicit by weighting some features more
heavily than others. It is possible that some filtering of input data
will be useful and needed. In that case, we can look to such preprocess-
ing procedures as FASIR (Los et al., 1994) as prototypes. Note also that
considerable noise reduction will occur in the view angle correction for
BRDF/Albedo, which fits a semiempirical model to the angular distribu-
tion of observed surface reflectances.

5. Seasonal snow cover can present problems, according to the panel re-
port, since it is not an inherent land cover characteristic and will be
highly variable.

To some extent, variation in snow cover within land cover type is tempo-
ral noise, and thus the considerations of the previous point apply. How-
ever, for the classifier to see the snow cover as noise, training sites
need to reflect the full range of snow cover dynamics within types. We
will endeavor to select such a range of sites. Snow-screening, suggested
in the report, is also a possibility.

I should also note that we are doing algorithm development and testing
with the Snow/Ice Team using data from Glacier National Park, and that
we have a joint field campaign at the Hubbard Brook/Sleepers River test
area in Vermont/New Hampshire scheduled for February. It will include
MAS overpasses.

6. The panel expresses the concern that strong use of temporal informa-
tion will increase the likelihood that the classification reflects the
seasonal dynamics of the year in which the data were obtained, citing
the case of seasonal droughts. They suggest that intermediate/higher
level variables may reduce the dependence on temporal information.

We don't believe this will present a problem, since the information will
be in both the training and classification data. As in the preceding
point, representative training data are important.

Intermediate and higher level variables, such as maximum, minimum, range
or time integral of NDVI in an annual cycle, have been used in some
classification studies (Lloyd, 1990; Moody and Strahler, 1994; DeFries
et al., 1995; Reed et al., 1995), primarily to reduce data volume. They
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can easily be used in our algorithm if they prove as effective as origi-
nal data. However, it is not obvious what variables to use for such in-
puts as surface reflectance. Note also that feature selection using de-
cision trees (see section 3.1.4.1.1) can also be effective.

7. The panel wonders what tests we have carried out on the use of BRDF
parameters in classification and what were the results.

This is an area that we are continuing to work. The exact parameters to
be used are still TBD, but we expect them to convey information about
the vegetation structure either through the specific surface scattering
model selected and/or by the weights of the parameters fitted to the
scattering model. We do know, however, that important information is
present in the directional signal. Section 2.2.3 cites several recent
studies that demonstrate the principle. Also, at the Beijing BRDF work-
shop (September, 1996), Marc Leroy presented some impressive results for
distinguishing forest types at BOREAS using multiangle data from the
POLDER simulator.

8. The panel observes that the use of ecoregions for processing will
most likely produce more problems than it solves.

On reflection, we agree, and will instead process by continents.

9. The panel points out some problems with the supervised classification
approach, which requires training sites. They note that this approach
(a) “limits the accuracy of the final product because such classifica-
tions ... are only 70-90% accurate;” (b) “assumes that ... [the] same
spatial resolution and cover types can be derived from the high resolu-
tion data to train the MODIS data - this is not straightforward;” (c)
“requires a sufficiently large sample of 'pure,' unmixed pixels for the
various cover types ... which may be difficult to achieve in many situa-
tions;” and (d) “assumes that signature extension will work, and this
has generally been difficult to achieve in most studies to date.”

As a general response, we have selected a supervised approach largely
because it is the most cost effective. It is easy to work with a super-
vised classifier quickly and efficiently, iterating classification pa-
rameters and training data in a logical, straightforward fashion. Unsu-
pervised classification, which is the other alternative, requires a long
process of stratifying and labeling classes. We believe that to do land
cover faster, better, cheaper, we will need to use the supervised ap-
proach, and also believe that advanced supervised classifiers are up to
the task. These classifiers can partition measurement space in ways
equivalent to the labeling of large numbers of unsupervised classes,
thus blurring the distinction between supervised and unsupervised clas-
sification. We are also exploring some unsupervised classifiers, includ-
ing a Gaussian version of ARTMAP.

With that said, however, it is certainly true that the volume and qual-
ity of training site data will be a critical factor in delivering an ac-
curate product. We have revised our approach to training sites signifi-
cantly since the writing of the ATBD that was reviewed. We now have a
strategy of collecting many more training sites and maintaining several
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different levels of training site information. Section 3.1.3 of the cur-
rent document provides more details.

Some specific responses:

(a) While we have observed overall accuracies of 85-90 percent in most
cases using neural net or decision tree classifiers, the query seems to
imply that other approaches could give better results. Except for some
isolated and specific studies, the literature does not indicate that
other approaches are capable of doing better.

(b) While we will rely primarily on high resolution imagery to identify
and label MODIS training pixels, we will also use ground data including
plot measurements, wherever possible. Moreover, some types of sites will
have multidate imagery, good ground maps, etc.

(c) The advanced classifiers are less restrictive in this area than the
conventional maximum likelihood classifier. Heterogeneous classes are
recognized as having multiple nodes (neural nets) or leaves (decision
trees) and are thus accommodated in the classification process.

(d) Signature extension depends on the quality and quantity of the
training data -- ensuring that the training information is truly repre-
sentative of the population to be classified. We hope that our resources
for acquiring training data will be up to the challenge. The EOS test
site initiative should help significantly.

10. The panel notes that intermediate variables have been used with sim-
ple classifiers to produce good results, and further remarks that single
date images have been used effectively.

Intermediate variables have been discussed in point 6. above. They will
not be overlooked, nor will simpler classifiers.

Single date images are more problematic, in that a single date strategy
would involve classifying many individual images and mosiacing the re-
sults. We are not unaware of the success Malingreau's group at Ispra has
had in classifying single-date AVHRR images; however, their work focused
only on classes of primary, secondary, and non-forest. Note that the
heritage of coarse resolution land classification using AVHRR NDVI time
trajectories documents the information value present in the multitempo-
ral signal. We don't believe it is desirable to discard this information
source in moving to a single-date strategy.

II. Value of data product to the Land science community

1. The panel remarks that the value of the product would be signifi-
cantly enhanced if produced at higher spatial resolution, and that if at
1-km, all that can be hoped for is better accuracy than pre-launch prod-
ucts.

We recall that it was only three short years ago that we were staunchly
defending the product at 1-km resolution in the face of assertions that
1-km was too fine! Point I.3 above responds specifically to this con-
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cern. We believe we will have significantly better accuracy than the at-
launch product, for two reasons. First, we will have real 1-km resolu-
tion, not just a 1-km product produced from multidate data registered to
3-5 km as is the case for AVHRR. Second, we will draw on information
from spectral, spatial, and directional domains that are not available
to any at-launch products now being developed.

III. Soundness of validation strategy

1. The panel notes that missing data may be a problem.

We agree that this problem needs more attention, although many of the
component data streams will be quite robust in this regard (e.g., BRDF).
As the panel notes, interpolation (e.g., FASIR) may be a possible op-
tion.

2. The panel observes that a water mask will be required.

The EOS/MODIS land water mask is the subject of much attention at pres-
ent. A 1-km database is currently being assembled combining efforts of
both JPL and EDC. It will be built into the cloud mask.

We have also considered the possibility of providing a more accurate
post-launch land/water mask as a by-product of the land cover product.
It is certainly possible, but to do it depends on the level of effort it
will require and the resources available.

3. Reference data will not be perfectly accurate, and the implications
of this need to be worked out, according to the panel.

We agree that this subject needs some attention. The statistical litera-
ture has some material on this, but we have not applied it specifically
to our situation as yet.

4. The panel remarks that our concern about BRDF effects in mountainous
regions is well-placed, but we do not provide information about proposed
solutions.

Again, this is a subject that needs further attention. The problem may
not be overly severe, however, if training sites include mountainous ar-
eas and advanced classifiers capable of accepting heterogeneous training
sites are used.

5. The panel notes that fuzzy labeling has merit, but that within-pixel
proportions will still be required.

Although fuzzy labeling is possible, we don't plan at this time to im-
plement a fuzzy labeling scheme as part of the routine product. However,
the mixed pixel issue is important in the accuracy assessment process,
and we may try to accommodate it there. Note that the quarter-degree
climate modeler's grid product will provide the proportions of land
cover types within each grid cell. At 1-km resolution, Aaron Moody of
the University of North Carolina, Chapel Hill, has an EOS Young Investi-
gator grant focused on applying neural networks to the proportion esti-



MOD12 ATBD Version 4.1—Land Cover and Land-Cover Change 95

mation problem. He worked on MODIS land cover while earning his Ph.D. at
Boston University, and so has close ties with our effort.

IV. Near-term recommendations

1. The panel recommends that one MODIS-based land cover product be gen-
erated as soon as possible after launch.

The presumption here is that there is sufficient information in nontem-
poral domains to provide an accurate land cover classification. This may
well be true for many parts of the world, and we agree that it is worth
a try. It will also be a good “pathfinder” activity for our processing
of the full multitemporal dataset. Another possibility would be to use
MODIS information to update the at-launch product in some way, since it
will most likely be based on AVHRR data from 1992-1993.

2. The panel recommends that the product have categories that can be
categorized and/or generalized for use by carbon, energy, and water cy-
cle modelers and be validated with 100 percent accurate data where pos-
sible. The prelaunch product should be validated.

The IGBP categories have been vetted by the IGBP core projects, which
include these modelers. We will endeavor to comprehensively validate our
product paying due attention to the accuracy of the validation data. The
at-launch product will be validated (see response to I.2 above).

3. The panel recommends that we collaborate with IDS teams and others in
comparing classification strategies and evaluating the product.

We are currently beginning another round of outreach to IDS teams, and
will continue our efforts in that direction. The EOS validation team, to
be proposed and selected in the near future, will also provide a source
of new investigators interested in land cover data.

MODIS Land-Cover Change

I. Technical soundness of the algorithms/approach described.

1. The panel observes that we are considering multiple algorithms for
land-cover change and notes that for the change product, the consis-
tency, stability and “meaning” (information content) of the product
should be all relatively stable.

We agree with the latter statement, and are focusing on the change-
vector approach as the primary tool for change detection and characteri-
zation. However, other algorithms may be needed to recognize and quan-
tify different types of changes, and thus we are also developing these.

II. Soundness of the validation strategy.

1. The panel observes that validation will be difficult, as there is no
clear surface variable to compare with the output of the product. They
note that the land cover test sites are not selected to validate change,
but for training and test of land cover classification.
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As the algorithm becomes more refined, it will be easier to develop a
specific validation plan for the exact output produced. Our current plan
for test sites (see section 3.1.3) includes change sites specifically.
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Figure 1. Land Cover Parameter process flow
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Figure 2. Land-Cover Change Parameter process flow.
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Figure 6. Changes in land cover and the resultant changes in spectral response and the
corresponding trajectories in the space defined by the normalized difference vegetation
index (greenness) and albedo based on multitemporal Thematic Mapper data for Bolivian
tropical rain forest. Following deforestation and conversion to pasture the albedo in-
creases and greenness drops substantially; regrowth is associated with an increase in
greenness and a small increase in albedo. Clearance of the regrowth leads to a reversal of
the former trajectory. If regrowth is allowed to continue then ultimately the spectral re-
sponses of the forest will occur. The solid arrows indicate observed transformations and
the open arrow inferred changes.


